por Pessoa Estranha » Qua Ago 07, 2013 18:29
Gostaria que me ajudassem a concluir esta demonstração.
Mostre que o ponto médio da hipotenusa de um triângulo retângulo equidista dos três vértices do triângulo.
Seja ABC um triângulo retângulo em B. Mostremos que o ponto médio da hipotenusa equidista dos três vértices. Tome M o ponto médio da hipotenusa AC. Precisamos concluir que AM = MC = MB. Num primeiro momento, já podemos concluir que AM = MC, pois M é o ponto médio. Agora, seja BM a distância de M até o vértice B. (Bem, a partir daqui, não consegui concluir o exercício. Tentei trabalhar com um ponto M´ (M linha) tal que BM´ correspondia à altura do triângulo relativa à hipotenusa. Mas, não consegui chegar em algum resultado).
Obrigada.
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MateusL » Qui Ago 08, 2013 02:07
Trace, por

, uma reta

paralela a

.
Seja

o ponto de intersecção de

e de

.

e

são semelhantes, de tal forma que

e também

, de onde se conclui que

A distância de

a

é igual a

. A distância de

a

será

.
Como

, teremos que essas duas distâncias são iguais.
Abraço!
-
MateusL
- Usuário Parceiro

-
- Mensagens: 68
- Registrado em: Qua Jul 17, 2013 23:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- geometria euclidiana plana
por daniela1994 » Ter Mar 13, 2012 15:47
- 2 Respostas
- 2473 Exibições
- Última mensagem por Luiz Augusto Prado

Qua Mar 14, 2012 08:30
Geometria Plana
-
- [Geometria Euclidiana Plana]
por Pessoa Estranha » Qua Ago 07, 2013 18:05
- 1 Respostas
- 1968 Exibições
- Última mensagem por e8group

Qui Ago 08, 2013 16:23
Geometria Plana
-
- [Geometria Euclidiana Plana]
por Pessoa Estranha » Sáb Ago 31, 2013 19:20
- 6 Respostas
- 7860 Exibições
- Última mensagem por adauto martins

Dom Jan 15, 2017 11:45
Geometria Plana
-
- [Geometria Euclidiana Plana]
por Pessoa Estranha » Dom Set 01, 2013 14:50
- 0 Respostas
- 1336 Exibições
- Última mensagem por Pessoa Estranha

Dom Set 01, 2013 14:50
Geometria Plana
-
- [Geometria Euclidiana Plana]
por Pessoa Estranha » Dom Set 01, 2013 22:51
- 2 Respostas
- 1832 Exibições
- Última mensagem por Pessoa Estranha

Seg Set 02, 2013 21:21
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.