• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda!

Ajuda!

Mensagempor barbara-rabello » Seg Ago 05, 2013 19:11

Prove que para quaisquer conjuntos A e B temos A \subset B se, e somente se, para qualquer conjunto C vale (A \cup C) \cap (B \cup C) = A \cup C.

Estou com dificuldade nesta questão, posso tentar fazer por Indução? Ou talvez por Absurdo?
Valeu!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Ajuda!

Mensagempor e8group » Seg Ago 05, 2013 22:45

Ainda não estudei teoria dos conjuntos como gostaria ,portanto talvez o que postarei apresentará erros .

Suponha C\neq \varnothing.Vamos mostar que se A \subset B ,então :(B\cup C)\cap(A\cup C) = A\cup C .

Dado , x em (B\cup C)\cap(A\cup C) ,segue-se que


x\in B\cup C e x\in A\cup C sse


(x \in B ou x\in C ) e (x \in A ou x\in C ) .

Desde que A \subset B ,temos que x \in A e x\in B sse x\in A\cap B sse x\in A . Daí resulta ,

(x \in B ou x\in C ) e (x \in A ou x\in C ) sse

x\in A ou x\in C o que mostra

(B\cup C)\cap(A\cup C) = A\cup C .

Reciprocamente, seja (B\cup C)\cap(A\cup C) = A\cup C . Dado , x \in (B\cup C)\cap(A\cup C) .Temos :

(x \in B ou x\in C ) e (x \in A ou x\in C ).

Por outro lado :

x \in A\cup C sse x \in A ou x\in C .

Logo , obtemos A \cap B = A e portanto A\subset B .

O caso C = \varnothing é obvio .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ajuda!

Mensagempor barbara-rabello » Sex Ago 09, 2013 15:14

Obrigada pela ajuda! Vou tentar refazer a questão seguindo a sua lógica.

Uma dúvida, quando você continuou a explicação a partir do reciprocamente, essa parte é para o O casoC = \varnothing?
Pois achei meio estranha, se for.

Valeu!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Ajuda!

Mensagempor barbara-rabello » Sex Ago 09, 2013 15:25

Desculpa a pergunta, mas o que significa sse ?
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Ajuda!

Mensagempor e8group » Sex Ago 09, 2013 22:00

barbara-rabello escreveu:Obrigada pela ajuda! Vou tentar refazer a questão seguindo a sua lógica.

Uma dúvida, quando você continuou a explicação a partir do reciprocamente, essa parte é para o O casoC = \varnothing?
Pois achei meio estranha, se for.

Valeu!


Não há de quê .A resolução a partir do reciprocamente não é para o caso C = \varnothing . Mas claramente quando C= \varnothing o resultado que foi provado (caso não contenha erros )acima também vale para este caso. Pois , A\subset B  \iff A \cap B = (A\cup \varnothing) \cap (B\cup \varnothing) = A\cup \varnothing = A .

barbara-rabello escreveu:Desculpa a pergunta, mas o que significa sse ?


" Se e somente se " ou " se e só se " (abreviadamente , sse )
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Ajuda!

Mensagempor barbara-rabello » Sex Ago 09, 2013 22:13

Muito obrigada mesmo pela ajuda!

Consegui entender sua lógica. Bem que eu achei que estava estranho se fosse para o segundo caso.

Mas uma vez, obrigada!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59