por Flordelis25 » Sex Ago 02, 2013 19:00
Olá pessoal

Bem estou com uma dúvida na resolução desse exercício. Não sei como resolvo ele, pois meu professor explicou só por cima e não sei como aplicar a teoria do caderno nele.
1)Dada a reta r de equação 2x - 3y + 1 = 0
a) dizer qual a abscissa do ponto de ordenada 3 pertencente à reta r.
b) determinar os pontos de intersecção da reta r com os eixos coordenados.
c) determinar o ponto de intersecção da reta r com a reta s, cuja equação é x + y - 1 = 0.
Obrigada à todos que responderem.
-
Flordelis25
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Abr 20, 2013 17:16
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Sáb Ago 03, 2013 08:44
Flordelis,
Flordelis25 escreveu:1)Dada a reta r de equação 2x - 3y + 1 = 0
a) dizer qual a abscissa do ponto de ordenada 3 pertencente à reta r.
Consideremos o ponto

;
- o número dois pertence ao eixo x, portanto,
ABSCISSA;
- o número três pertence ao eixo y, daí,
ORDENADA.
O enunciado fornece a seguinte informação:

. Resta-nos substituir aquele valor na equação da reta
r e encontrar o valor de 'x' (abscissa). Segue,

Flordelis25 escreveu:b) determinar os pontos de intersecção da reta r com os eixos coordenados.
Eixos coordenados, a grosso modo, é aquele em que um dos eixos (horizontal ou vertical) é nulo. Tomemos com exemplo o seguinte ponto

, note que o ponto é marcado sobre o eixo vertical (horizontal nulo).
Daí, os eixos coordenados são dados por

e

. Segue,
- intersecção do ponto

com a reta
r:

- intersecção do ponto

com a reta
r:


Flordelis25 escreveu:c) determinar o ponto de intersecção da reta r com a reta s, cuja equação é x + y - 1 = 0.
Para resolver essa alínea, deverás isolar o

nas duas equações e igualar. Após encontrar um valor para a abscissa, ou seja, o valor de

, substitua-o em uma das equações da reta para obter o valor de

. Pronto! encontraste o ponto de intersecção.
Espero ter ajudado!
Qualquer dúvida comente!
Att,
Daniel Ferreira.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Flordelis25 » Sáb Ago 03, 2013 21:08
Só uma dúvida Daniel Ferreira, nesta parte, seria

, não é?!
Mas a resolução está certa, só notei o erro. Sem querer ser chata

- intersecção do ponto

com a reta
r:


Obrigada mesmo Daniel, me ajudou mesmo e eu entendi tudinho (milagre kkkk).
Bjbj
-
Flordelis25
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Abr 20, 2013 17:16
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Sáb Ago 03, 2013 22:40
[Risos].
Esteja certa de que não me incomodo por ter encontrado/apontado erro em minha resolução, significa que realmente entendeu!! Parabéns!!
Até a próxima, inclusive, responda quando souber!!
Daniel Ferreira.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- como resolvo este exercicio!
por weverton » Sáb Set 04, 2010 01:23
- 3 Respostas
- 6021 Exibições
- Última mensagem por weverton

Qui Set 09, 2010 03:07
Geometria Espacial
-
- [Funções] Como resolvo este dominio?
por carvalhothg » Seg Out 17, 2011 14:33
- 1 Respostas
- 1124 Exibições
- Última mensagem por LuizAquino

Seg Out 17, 2011 15:36
Funções
-
- Como resolvo essa equação?
por LuizCarlos » Seg Jul 25, 2011 14:07
- 8 Respostas
- 4933 Exibições
- Última mensagem por LuizCarlos

Ter Jul 26, 2011 00:04
Sistemas de Equações
-
- [AVALIAR ERRO] Como eu resolvo um exercício desse tipo?
por amigao » Dom Mai 26, 2013 11:45
- 2 Respostas
- 3288 Exibições
- Última mensagem por amigao

Dom Mai 26, 2013 18:27
Cálculo: Limites, Derivadas e Integrais
-
- DUVIDA DE COMO FAZER ESTE EXERCICIO
por simoneribeiro » Dom Set 23, 2012 22:43
- 0 Respostas
- 1536 Exibições
- Última mensagem por simoneribeiro

Dom Set 23, 2012 22:43
Análise Combinatória
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.