• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação e coeficientes] Como resolvo este exercício

[Equação e coeficientes] Como resolvo este exercício

Mensagempor Flordelis25 » Sex Ago 02, 2013 19:00

Olá pessoal :)

Bem estou com uma dúvida na resolução desse exercício. Não sei como resolvo ele, pois meu professor explicou só por cima e não sei como aplicar a teoria do caderno nele. *-)

1)Dada a reta r de equação 2x - 3y + 1 = 0
a) dizer qual a abscissa do ponto de ordenada 3 pertencente à reta r.
b) determinar os pontos de intersecção da reta r com os eixos coordenados.
c) determinar o ponto de intersecção da reta r com a reta s, cuja equação é x + y - 1 = 0.

Obrigada à todos que responderem.
Flordelis25
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Abr 20, 2013 17:16
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Equação e coeficientes] Como resolvo este exercício

Mensagempor DanielFerreira » Sáb Ago 03, 2013 08:44

Flordelis,

Flordelis25 escreveu:1)Dada a reta r de equação 2x - 3y + 1 = 0
a) dizer qual a abscissa do ponto de ordenada 3 pertencente à reta r.


Consideremos o ponto (x, y) = (2, 3);
- o número dois pertence ao eixo x, portanto, ABSCISSA;
- o número três pertence ao eixo y, daí, ORDENADA.

O enunciado fornece a seguinte informação: \boxed{y = 3}. Resta-nos substituir aquele valor na equação da reta r e encontrar o valor de 'x' (abscissa). Segue,

\\ 2x - 3y + 1 = 0 \\ 2x - 3 \cdot 3 + 1 = 0 \\ 2x - 9 + 1 = 0 \\ 2x = 8 \\ \boxed{\boxed{x = 4}}


Flordelis25 escreveu:b) determinar os pontos de intersecção da reta r com os eixos coordenados.


Eixos coordenados, a grosso modo, é aquele em que um dos eixos (horizontal ou vertical) é nulo. Tomemos com exemplo o seguinte ponto (x, y) = (0, 2), note que o ponto é marcado sobre o eixo vertical (horizontal nulo).

Daí, os eixos coordenados são dados por (x, 0) e (0, y). Segue,

- intersecção do ponto (x, 0) com a reta r:

\\ 2x - 3y + 1 = 0 \\ 2x - 3 \cdot 0 + 1 = 0 \\ 2x + 1 = 0 \\ \boxed{x = - \frac{1}{2}}


- intersecção do ponto (y, 0) com a reta r:

\\ 2x - 3y + 1 = 0 \\ 2 \cdot 0 - 3y + 1 = 0 \\- 3y + 1 = 0 \\ \boxed{y = \frac{1}{3}}

\boxed{\boxed{S = \left{ (- \frac{1}{2}, 0) \;\; \text{e} \;\; (0, \frac{1}{3}) \right}}}


Flordelis25 escreveu:c) determinar o ponto de intersecção da reta r com a reta s, cuja equação é x + y - 1 = 0.


Para resolver essa alínea, deverás isolar o y nas duas equações e igualar. Após encontrar um valor para a abscissa, ou seja, o valor de x, substitua-o em uma das equações da reta para obter o valor de y. Pronto! encontraste o ponto de intersecção.

Espero ter ajudado!

Qualquer dúvida comente!

Att,

Daniel Ferreira.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Equação e coeficientes] Como resolvo este exercício

Mensagempor Flordelis25 » Sáb Ago 03, 2013 21:08

Só uma dúvida Daniel Ferreira, nesta parte, seria (0,y), não é?!
Mas a resolução está certa, só notei o erro. Sem querer ser chata :)


- intersecção do ponto (y, 0) com a reta r:

\\ 2x - 3y + 1 = 0 \\ 2 \cdot 0 - 3y + 1 = 0 \\- 3y + 1 = 0 \\ \boxed{y = \frac{1}{3}}

\boxed{\boxed{S = \left{ (- \frac{1}{2}, 0) \;\; \text{e} \;\; (0, \frac{1}{3}) \right}}}

Obrigada mesmo Daniel, me ajudou mesmo e eu entendi tudinho (milagre kkkk).

Bjbj
Flordelis25
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Abr 20, 2013 17:16
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Equação e coeficientes] Como resolvo este exercício

Mensagempor DanielFerreira » Sáb Ago 03, 2013 22:40

[Risos].

Esteja certa de que não me incomodo por ter encontrado/apontado erro em minha resolução, significa que realmente entendeu!! Parabéns!!

Até a próxima, inclusive, responda quando souber!!

Daniel Ferreira.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?