por Pessoa Estranha » Sex Ago 02, 2013 16:14
Olá. Não estou conseguindo entender um exercício sobre vetores. O exercício diz o seguinte: "Prove que, se o vetor u é um múltiplo escalar do vetor v (u=k.v), então qualquer sequência que contém os vetores u e v é linearmente dependente (LD)". Bom, o meu raciocínio ficou assim: temos, por hipótese, que o vetor u é um múltiplo escalar do vetor v e, portanto, são paralelos e, logo, a sequência de vetores (u,v) é linearmente dependente (LD). Agora, temos que pensar no caso de uma sequência de três vetores e no caso com quatro ou mais vetores. Neste último, com quatro ou mais, por definição, sabemos que tal sequência é sempre linearmente dependente. Agora, o que eu não consigo entender é o caso de três vetores numa sequência. Teríamos que pensar numa sequência com, é claro, os vetores u e v, e acrescentar mais um, por exemplo, um vetor w. Assim, seria uma sequência (u, v, w) para provar que é LD. Porém, pelo que estudei, entendo que uma sequência com três vetores é LD quando todos os vetores em questão são paralelos à um mesmo plano; e são LI (linearmente independente) quando ocorre o contrário, se, por exemplo, o vetor w é não é paralelo ao mesmo plano que os outros dois vetores são. Sei também que existe uma proposição tal que diz que a sequência de vetores (u, v, w) é LD se, e somente se, um dos vetores é gerado pelos outros dois, no caso, w gerado por u e v. Eu acho que o certo é usar esta proposição para provar que a sequência é LD. Procurei saber como usar tal proposição e me disseram que devo usar o coeficiente igual a zero multiplicando o vetor w, mas eu não consigo entender como podemos simplesmente acrescentar o zero assim! (Parece uma questão boba, mas não entendo).
Obrigada!
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Sex Ago 02, 2013 21:35
Exercício interessante vamos ver o que sai ...
Considere

vetores sobre um espaço vetorial

onde por simplicidade trocamos

por

e

por

vamos mostra que se (u_1,u_2 ) L.D. então a sequência ou n-upla

. Suponhamos inicialmente que tenhamos uma combinação linear nula ,

(em que

é o vetor nulo do espaço vetorial E ) .
Ora , sendo

, reescrevendo

(

) temos :

sse

. Se os vetores

são L.D. obteremos escalares não todos nulos satisfazendo

chegando a conclusão que

,caso eles são L.I. resulta ,

sse

.
A combinação linear nula

se resume em

, desde que por hipótese

esta combinação linear nula admite solução além da trivial . Assim obtemos escalares

não todos nulos tais que ,

e portanto

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Pessoa Estranha » Sex Ago 02, 2013 21:58
Olá. Muito obrigada pela resposta, mas gostaria de saber se há outra maneira de resolver, pois ainda não aprendi somatória (estou no primeiro ano). Mesmo assim, muito obrigada; a sua resposta parece muito boa. Valeu!
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Sex Ago 02, 2013 22:08
Também estou no primeiro ano e sei quase nada de matemática .Apenas compactei uma soma . Observe :

.
Se este exercício trata-se de um exercício de geometria analítica ,pode considerar por exemplo

ou

ou generalizar

. Mas em geral para espaços abstratos vale a solução (acredito ) .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Pessoa Estranha » Sáb Ago 03, 2013 11:17
Está certo. Valeu! Acho que agora vou conseguir resolver.
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Geometria Analítica - Dependência Linear
por -civil- » Sex Abr 22, 2011 13:29
- 1 Respostas
- 1436 Exibições
- Última mensagem por NMiguel

Sex Abr 22, 2011 14:16
Geometria Analítica
-
- [Geometria Analítica] Dependência Linear.
por Pessoa Estranha » Ter Ago 13, 2013 19:51
- 8 Respostas
- 9086 Exibições
- Última mensagem por Pessoa Estranha

Qui Ago 15, 2013 16:14
Geometria Analítica
-
- [Geometria Analítica] Dependência e independência linear
por Aliocha Karamazov » Qua Out 12, 2011 12:43
- 2 Respostas
- 2204 Exibições
- Última mensagem por Aliocha Karamazov

Qua Out 26, 2011 21:57
Geometria Analítica
-
- Algebra linear e geometria analítica
por clari_27 » Sáb Mai 12, 2012 17:32
- 1 Respostas
- 1800 Exibições
- Última mensagem por LuizAquino

Seg Mai 14, 2012 10:56
Geometria Analítica
-
- Geometria Analitica e Algebra linear
por Danizinhalacerda13 » Qui Mai 01, 2014 19:15
- 1 Respostas
- 2777 Exibições
- Última mensagem por Danizinhalacerda13

Qui Mai 01, 2014 19:25
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.