por lucasdemirand » Ter Jul 09, 2013 16:21
Olá pessoal, estou com uma duvida pra descobrir como calcular o limite da seguinte função
lim x --> +? 3x+?x²+9/2x+?4x²+9
se trata de uma indeterminação do tipo ? /? matéria a qual ainda encontro duvidas, quem puder ajudar ficarei grato
-
lucasdemirand
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Sáb Jul 06, 2013 12:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica
- Andamento: cursando
por young_jedi » Sex Jul 26, 2013 20:59
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limites] exercicio de calculo envolvendo limites
por lucasdemirand » Qua Jul 10, 2013 00:45
- 1 Respostas
- 4075 Exibições
- Última mensagem por e8group

Sáb Jul 20, 2013 13:08
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] exercicio limites envolvendo ln
por lucasdemirand » Qua Jul 10, 2013 00:31
- 1 Respostas
- 2078 Exibições
- Última mensagem por young_jedi

Qua Jul 10, 2013 21:48
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] exercicio de limites tendendo a zero
por lucasdemirand » Qui Jul 11, 2013 18:00
- 1 Respostas
- 1695 Exibições
- Última mensagem por e8group

Sex Jul 12, 2013 11:43
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Exercício com limites notáveis
por fff » Sáb Fev 08, 2014 21:41
- 3 Respostas
- 2512 Exibições
- Última mensagem por e8group

Dom Fev 09, 2014 15:29
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] exercicio de limites
por lucasdemirand » Ter Jul 09, 2013 16:21
- 2 Respostas
- 1647 Exibições
- Última mensagem por lucasdemirand

Ter Jul 09, 2013 18:02
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.