• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CALCULO

CALCULO

Mensagempor Victor Gabriel » Qua Jul 17, 2013 12:17

Pessoal tem como alguém mim ajudar com esta questão.

Questão: Encontre a maior e a menor distância de um ponto situado sobre a elipse \frac{{x}^{2}}{4}+{y}^{2}=1 à reta x+y-4=0
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: CALCULO

Mensagempor Russman » Qua Jul 17, 2013 19:27

A grandeza de interesse a ser minimizada ou maximizada é a distância entre as curvas. Assim, o primeiro passo é determiná-la em função dos parâmetros das mesmas.

A distância entre dois pontos (x_1,y_1) e (x_2,y_2) é dada por

d = \sqrt{\left (x_2 - x_1  \right )^2 + \left ( y_2 - y_1 \right )^2} .

Como um dos pontos deve pertencer a elipse e o outro a reta, então podemos relacionar as coordenadas, escolhendo, por exemplo, o subíndice 1 para a reta e 2 para a elipse, da seguinte forma

\left\{\begin{matrix}
x_2+y_2-4=0 \\ 
\frac{x^2_2}{4} + y_2^2 = 1
\end{matrix}\right. \Rightarrow \left\{\begin{matrix}
y_1 = 4- x_1 \\ 
y_2 = \sqrt{1 - \left ( \frac{x_2^2}{4} \right )}
\end{matrix}\right.

de modo que

d = \sqrt{\left (x_2 - x_1  \right )^2 + \left (  \sqrt{1 - \left ( \frac{x_2^2}{4} \right )} - 4+ x_1 \right )^2}

Agora não sei se o ponto sobre a elipse é um qualquer, um específico(não parece ser pelo enunciado) ou se é o par de pontos que minimizam ou maximizam a função distância não localmente mas globalmente. Se sim, então temos uma função de duas variáveis e as respectivas derivadas parciais de cada variável serão nulas nos pontos de máximo e mínimo.

Uma outra alternativa seria considerar que a distância entre as curvas deveria ser uma reta PERPENDICULAR a reta dada. Isto simplificaria bastante as coisas. Veja que, nesse caso, a distância entre um ponto (x,y) qualquer pertencente a elipse e a reta de equação ax+by+c=0 é dada por

d= \frac{1}{\sqrt{a^2+b^2}}\left | ax+by+c \right |

e dada reta, então

d= \frac{1}{\sqrt{2}}\left | x+y-4 \right | .

Como o ponto deve pertencer a elipse, temos a relação y = \sqrt{1 - \left ( \frac{x^2}{4} \right )} e, portanto,

d= \frac{1}{\sqrt{2}}\left | x+ \sqrt{1 - \left ( \frac{x^2}{4} \right )}-4 \right |.

Agora temos a distância entre as curvas em função da coordenada x que, como varia de -2 a 2 e ,nesse intervalo, o valor que está dentro do módulo é negativo podemos nos livrar dele colocando um sinal menos na frente da função.

d(x)= -\frac{1}{\sqrt{2}} \left (x+ \sqrt{1 - \left ( \frac{x^2}{4} \right )}-4  \right )

ou

d(x)= -\frac{1}{\sqrt{2}} \left (x+ \frac{1}{2}\sqrt{4 -x^2}-4  \right ).

Agora para extremá-la temos de calcular qual valor de x que zera a derivada primeira.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.