por jpreis » Seg Jul 15, 2013 23:10
Fala Galera, blz? Peço a gentileza de me ajudar no seguinte problema:
"Num determinado circuito elétrico, a corrente 'I' é dada, em função da voltagem 'V', da resistência 'R' e da indutância 'L' por
![I = \frac{V}{\sqrt[2]{{R}^{2}+10.{L}^{2}}} I = \frac{V}{\sqrt[2]{{R}^{2}+10.{L}^{2}}}](/latexrender/pictures/e5cbbd819763792edfd0eaf70d035b72.png)
. No instante em que 'V' é 210 volts, R é igual a 3 ohms e está decaindo a uma taxa de 0,1 ohms por segundo, enquanto que 'L' é igual a 2 henrys e está crescendo a uma razão de 0,05 henrys por segundo. Qual deve ser a variação de 'V', neste instante, para que a corrente permaneça constante?". Resposta = 3 volts por segundo.
COMO TENTEI RESOLVER: primeiro achei o valor de I através da substituição dos valores fornecidos pelo enunciado na equação
![I = \frac{V}{\sqrt[2]{{R}^{2}+10.{L}^{2}}} I = \frac{V}{\sqrt[2]{{R}^{2}+10.{L}^{2}}}](/latexrender/pictures/e5cbbd819763792edfd0eaf70d035b72.png)
, ficando desta forma:
![I = \frac{210}{\sqrt[2]{49}} = 30 I = \frac{210}{\sqrt[2]{49}} = 30](/latexrender/pictures/6fcf1c943af983c604e6cc3e103f0bd9.png)
. Após encontrar o valor de I, este foi igualado às derivadas de I em função das variáveis

e multipliquei cada derivada parcial por sua respectiva taxa de variação

; lembrando que o valor que quero encontrar é

; assim ficou:

.
Resolvendo as derivadas, encontrei:
![\frac{\partial I}{\partial V} = \frac{1}{\sqrt[2]{{R}^{2}+10.{L}^{2}}} \frac{\partial I}{\partial V} = \frac{1}{\sqrt[2]{{R}^{2}+10.{L}^{2}}}](/latexrender/pictures/5188559259bcaf6892cdd4568d69f646.png)
;
![\frac{\partial I}{\partial R} = \frac{V}{L.\sqrt[2]{10}}.-\frac{1}{{R}^{2}} \frac{\partial I}{\partial R} = \frac{V}{L.\sqrt[2]{10}}.-\frac{1}{{R}^{2}}](/latexrender/pictures/e597083528a8fa235ef71e3aed37b69f.png)
; e
![\frac{\partial I}{\partial L} = \frac{V}{R.\sqrt[2]{10}}.-\frac{1}{{L}^{2}} \frac{\partial I}{\partial L} = \frac{V}{R.\sqrt[2]{10}}.-\frac{1}{{L}^{2}}](/latexrender/pictures/336bcda187ceec6ab911e2912aaecf7d.png)
.
Fazendo desta forma encontrei um valor na ordem de 200, ou seja, muito distante da resposta correta (3 volts/s). Refiz diversas vezes e não saiu deste resultado.
Desde já agradeço a ajuda. Forte abraço!
jpreis
-
jpreis
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sáb Jul 13, 2013 14:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Russman » Ter Jul 16, 2013 00:36
O seu problema é inteiramente de Cálculo Diferencial. Voce tem uma função

que depende de 3 variáveis

,

e

as quais dependem do tempo

. Assim, a derivada total de

será


.
Dada a função, temos que

Se queremos calcular a variação de V, isto é,

no instante indicado, para que a corrente se mantenha constante, isto é,

, então basta substituir na relação da derivada e teremos um resultado. Veja que no instante indicado temos

Agora substitua os valores, isole a derivada temporal de V e terá a solução.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivadas parciais
por john » Ter Fev 15, 2011 15:37
- 7 Respostas
- 6569 Exibições
- Última mensagem por john

Sáb Fev 19, 2011 16:24
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas parciais
por baianinha » Ter Jul 05, 2011 00:50
- 1 Respostas
- 2560 Exibições
- Última mensagem por MarceloFantini

Ter Jul 05, 2011 03:53
Cálculo: Limites, Derivadas e Integrais
-
- DERIVADAS PARCIAIS
por allyourwishes » Seg Jul 13, 2015 11:24
- 0 Respostas
- 2339 Exibições
- Última mensagem por allyourwishes

Seg Jul 13, 2015 11:24
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas parciais
por caarolsnp » Sex Out 13, 2017 11:40
- 0 Respostas
- 4230 Exibições
- Última mensagem por caarolsnp

Sex Out 13, 2017 11:40
Cálculo: Limites, Derivadas e Integrais
-
- [otimização] DERIVADAS PARCIAIS
por montanha » Seg Ago 04, 2008 10:18
- 5 Respostas
- 12915 Exibições
- Última mensagem por admin

Sex Ago 08, 2008 15:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.