• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] como calcular

[Integral] como calcular

Mensagempor ghiza » Seg Jul 15, 2013 11:23

\int \frac{dx}{x^2+6x+13}

chegei em \int \frac{dx}{(x+3)^2+2^2}

u=x+3
logo, \int \frac{du}{(u+2)^2}

t=u+2
\int \frac{dt}{t^2}

\int \frac{t^-^2 dt}

\int {t^-^2 dt}= -\frac{t^-^1}{1} +c


agora substituindo
-(x+5)^-^1+c

isso está correto?
Editado pela última vez por ghiza em Seg Jul 15, 2013 13:22, em um total de 1 vez.
ghiza
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Jul 14, 2013 21:23
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. alimentos
Andamento: cursando

Re: [Integral] como calcular

Mensagempor e8group » Seg Jul 15, 2013 12:36

Só compreendi a primeira parte que você completou quadrados (parte esta correta ) .As outras partes não compreendi devido ao erro com LaTeX . A motivação de completar quadrados e utilizar substituição simples é o fato da composição de funções . Observando o integrando já podemos dizer que a resposta da integral terá o formato arctan(g(x)) + k ,k\in \mathbb{R} onde g é uma função que vamos determinar ( Nota : (arctan(g(x)) + k  )' = \frac{g'(x)}{1+g^2(x)} ) .

Usando que x^2 + 6x +13 = (x+3)^2 + 4 e deixando 4 em evidência ,segue :

x^2 + 6x +13 = 4 (\frac{(x+3)^2}{4} + 1)  =  4 \left( \left(\frac{x+3}{2}\right)^2 +1 \right) .

Agora a substituição simples u = \frac{x+3}{2} resolve o problema .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Integral] como calcular

Mensagempor ghiza » Seg Jul 15, 2013 13:24

corrigi os erros nas formulas. mas acho que é como foi fez mesmo. valeu
ghiza
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Jul 14, 2013 21:23
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. alimentos
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.