• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] como calcular

[Derivadas] como calcular

Mensagempor ghiza » Dom Jul 14, 2013 21:45

g(x)=\frac{5^1^-^x^³}{3x}
preciso achar g'(x). quando resolvo eu chego em g'(x)=\frac{5^1^-^x^³(ln5)-3x²}{3} , porem sei que esta nao é a resposta correta. alguem pode me ajudar?
ghiza
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Jul 14, 2013 21:23
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. alimentos
Andamento: cursando

Re: [Derivadas] como calcular

Mensagempor young_jedi » Dom Jul 14, 2013 23:11

se entendi a equação é assim

g(x)=\frac{5^{1-x^3}}{3x}

utilizando a regra da derivada da divisão termos

g'(x)=\frac{(5^{1-x^3})'.3x-5^{1-x^3}.(3x)'}{(3x)^2}

g'(x)=\frac{ln(5).5^{1-x^3}.(3x^2).3x-5^{1-x^3}.3}{(3x)^2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas] como calcular

Mensagempor Man Utd » Dom Jul 14, 2013 23:39

:)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.