• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] como calcular

[Derivadas] como calcular

Mensagempor ma-mine » Sáb Jul 13, 2013 15:24

considere a função real de variável real w'(w)=x.lnx
Determine w(x) sabendo que w(1)=0


Alguem me saberá ajudar nesta questão?
ma-mine
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Jul 13, 2013 15:15
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em gestão de empresas
Andamento: cursando

Re: [Derivadas] como calcular

Mensagempor young_jedi » Dom Jul 14, 2013 11:54

A equação é

w'(w)=x.ln(x)

ou

w'(x)=x.ln(x)

?
se for a segunda é so realizar a integral
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas] como calcular

Mensagempor ma-mine » Dom Jul 14, 2013 15:54

a equação é w'(x)

e já agora, não a outra maneira de resolver sem utilizar a integral?
ma-mine
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Jul 13, 2013 15:15
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em gestão de empresas
Andamento: cursando

Re: [Derivadas] como calcular

Mensagempor e8group » Dom Jul 14, 2013 19:00

Se permite-me participar da conversar ,caso você ainda não aprendeu técnicas de integração.Alternativamente, o que podemos fazer é pensar em uma função que sua derivada é x \cdot ln(x) .Neste caso é fácil determinar tal função . Comece observando que a função w é dada porw(x) = p(x)\cdot ln(x) +  q(x) onde p,q são polinômios . Derivando então w em ordem a x , obtemos :

w'(x) = [p(x)\cdot ln(x) +  q(x)]' = p'(x) \cdot ln(x) + \frac{p(x)}{x} + q'(x) = x \cdot ln(x) . Comparando a igualdade ,só podemos ter , p'(x) = x e \frac{p(x)}{x} + q'(x) = 0 .Assim , fica fácil ver que p(x) = \frac{x^2}{2} (Por quê ? ) e portanto ,


q'(x) =  - \frac{1}{2} x ;donde segue q(x) = - \frac{1}{4} x^2 + k onde ké uma constante (pois,(- \frac{1}{4} x^2 + k) ' =  -1/2x ) . Assim, a função w é definida por :

w(x) = \frac{x^2}{2} ln(x) - \frac{1}{4} x^2 + k . Agora basta usar que w(0) = 1 para determinar k .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)