Peço ajuda para resolver o seguinte problema:
A areia é derramada num monte cônico na velocidade de 4m^3 por minuto. Num dado instante, o monte tem 6m de diâmetro e 5m de altura. Qual a taxa de aumento da altura nesse instante, se o diâmetro aumenta na velocidade de 2cm por minuto? Resposta: 0,39m/min.
Como tentei resolver: o enunciado apresenta duas variações (diâmetro e altura) para o cone; desta forma, tentei utilizar a equação do volume do cone:
, derivando-a em função do raio (diâmetro/2) e em função da altura:
e
e ainda, relacionando as derivadas com suas respectivas taxas de variação: dh=? (que é a resposta que estou tentando obter) e dR=2cm/min (aqui já me surge a 1ª dúvida: quem varia em 2cm/min é o diâmetro e não o raio, para o raio posso utilizar a variação em 1cm/min? ou devo utilizar como variação [dR] a variação da área da circunferência formada na base do cone [dAc]?). 2ª dúvida: não sei como incluir nos cálculos a vazão enunciada no problema (4m^3 por minuto)... bom pessoal, tentei desta forma e não saí do lugar, não parece algo complicado, mas sinceramente tenho dificuldades em extrair e organizar as informações de forma correta em problemas envolvendo o cálculo.Desde já agradeço a ajuda, forte abraço!
jpreis





em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, então
. Como módulo é um:
.
.