Materiais sobre Cálculo.
Utilize a seção de pedidos para outros que não estejam disponíveis.
As fontes dos arquivos serão diversas e deverão ser citadas sempre que possível, mantendo totalmente os créditos dos respectivos autores.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por FERNANDA_03 » Qui Jul 11, 2013 23:10
Alguém pode me ajudar? Como faço para verificar se o ponto P

pertence à curva C:

?
-
FERNANDA_03
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Jan 05, 2013 22:02
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por e8group » Sex Jul 12, 2013 11:28
Note que um ponto P genérico desta curva é tal que

onde

. Assim por exemplo se o ponto

pertence a curva ,então as coordenadas do mesmo são tais que

(Note que apenas trocamos "r" por "a" e "\theta" por "\phi " então basta fazer o mesmo procedimento com o ponto dado) .
Observação :
Se surgir dúvidas com a definição (#) ,
recomendo a leitura (#) o sist. de coordenadas polares
aqui ! .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por FERNANDA_03 » Sex Jul 26, 2013 09:58
Obrigada Santhiago.
-
FERNANDA_03
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Jan 05, 2013 22:02
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Cálculo
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Coordenadas Polares
por Questioner » Sáb Jul 17, 2010 14:54
- 2 Respostas
- 4076 Exibições
- Última mensagem por Questioner

Sáb Jul 17, 2010 18:37
Geometria Analítica
-
- Coordenadas Polares
por Bruhh » Seg Mar 21, 2011 15:39
- 4 Respostas
- 3841 Exibições
- Última mensagem por Bruhh

Ter Mar 22, 2011 14:22
Cálculo: Limites, Derivadas e Integrais
-
- Coordenadas polares
por suziquim » Seg Mai 16, 2011 17:31
- 2 Respostas
- 1704 Exibições
- Última mensagem por suziquim

Ter Mai 17, 2011 11:15
Cálculo: Limites, Derivadas e Integrais
-
- Coordenadas polares
por manuoliveira » Ter Nov 20, 2012 09:03
- 1 Respostas
- 1619 Exibições
- Última mensagem por MarceloFantini

Ter Nov 20, 2012 09:57
Cálculo: Limites, Derivadas e Integrais
-
- esboço de coordenadas polares
por Priscila_moraes » Ter Nov 22, 2011 12:52
- 2 Respostas
- 1700 Exibições
- Última mensagem por MarceloFantini

Qua Nov 23, 2011 16:21
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.