• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] limites no infinito

[Limites] limites no infinito

Mensagempor lucasdemirand » Qui Jul 11, 2013 15:10

olá pessoal, tenho uma duvida neste exercicio, estou multiplicando pelos dois conjugador, mas ainda assim nao estou conseguindo acertar ele, O gabarito que possuo dá ?3/3
\lim_{x\rightarrow \infty} = \frac{\sqrt[]{x³+2} +\sqrt[]{x^5}}{\sqrt[]{3x^5+1}+x}
lucasdemirand
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sáb Jul 06, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: [Limites] limites no infinito

Mensagempor e8group » Qui Jul 11, 2013 15:38

Dica :

Note que ,

\sqrt{x^3+2} + \sqrt{x^5} = \sqrt{x^3[1+2/x^3]} + \sqrt{x^5} = \sqrt{x^3} \sqrt{1+2/x^3}  + \sqrt{x^5} = x^{3/2} (1+2/x^3)^{1/2} + x^{5/2} = x^{5/2} \left[x^{3/2} \frac{(1+2/x^3)^{1/2}}{x^{5/2}} +1\right] = x^{5/2} \left[ \frac{(1+2/x^3)^{1/2}}{x} +1\right]


e

também que

(3x^5+1)^{1/2} + x  =  x^{5/2} (3 + 1/x^5)^{1/2} + x  =   x^{5/2} \left[ (3 + 1/x^5)^{1/2} + 1/x^{3/2}\right]

Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.