por Jhenrique » Ter Jul 02, 2013 19:10
Falae gente, blz!?
Deem uma breve olhada nas definições em edp com relação a x, y, z, r, p, ?, ? e ? do operador nabla aplicado às funções de campo...
http://fr.wikipedia.org/wiki/Nablaquando o laplaciano, por exemplo, está definido no sistema cartesiano, tem-se ?²f/?x² + ?²f/?y² + ?²f/?z² , mas quando está definido no sistema esférico ou cilíndrico, então a definição fica bem mais cabulosa...
Em vez de ter que decorá-las, eu gostaria de saber como deduzi-las. Poderiam me demonstrar dá onde elas vem!?
Segue estas relações caso possa ajudá-los a me ajudar...

Vlw!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo Vetorial
por roger0196 » Seg Abr 04, 2011 15:02
- 6 Respostas
- 5108 Exibições
- Última mensagem por Jackie

Ter Abr 26, 2011 20:20
Geometria Analítica
-
- Calculo Vetorial
por Renato Lima » Qua Abr 27, 2011 22:21
- 1 Respostas
- 1967 Exibições
- Última mensagem por LuizAquino

Qua Abr 27, 2011 23:12
Geometria Analítica
-
- GA e Calculo Vetorial
por camposhj » Sex Out 07, 2011 00:41
- 3 Respostas
- 2310 Exibições
- Última mensagem por LuizAquino

Sex Out 07, 2011 13:06
Geometria Analítica
-
- cálculo vetorial
por fasaatyro » Sáb Mai 02, 2015 12:02
- 0 Respostas
- 1200 Exibições
- Última mensagem por fasaatyro

Sáb Mai 02, 2015 12:02
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de Função vetorial
por cristian9192 » Sex Out 26, 2012 15:18
- 1 Respostas
- 1659 Exibições
- Última mensagem por young_jedi

Sex Out 26, 2012 16:21
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.