• Anúncio Global
    Respostas
    Exibições
    Última mensagem

AJUDA!! Resolva em IR a seguinte equação:

AJUDA!! Resolva em IR a seguinte equação:

Mensagempor Filipefutsal » Seg Jul 01, 2013 08:48

Alguém me pode resolver a seguinte equação ?

log(3x)=log(2x+1)
Filipefutsal
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Jun 24, 2013 08:29
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Informática
Andamento: cursando

Re: AJUDA!! Resolva em IR a seguinte equação:

Mensagempor Rafael16 » Seg Jul 01, 2013 12:50

Olá Filipefutsal, quando temos uma igualdade de logaritmos com a mesma base, cortamos a base e trabalhamos só com os logaritmandos. Exemplo:

{log}_{a}b = {log}_{a}c \Rightarrow b = c

{log}_{10}(3x) = {log}_{10}(2x+1) \Rightarrow 3x = 2x + 1 \Rightarrow x = 1

Dá uma olhada nesse site: http://www.brasilescola.com/matematica/ ... tmicas.htm
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.