por tatianaCAL » Sáb Jun 22, 2013 09:45
Olá, gostaria de resolver o seguinte limite sem utilizar a regra de L'Hospital!
Tentei multiplicar pelo conjugado, usar a equação fundamental da trigonometria, mas não consegui achar uma resposta :(

-
tatianaCAL
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Jun 22, 2013 09:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia
- Andamento: cursando
por e8group » Sáb Jun 22, 2013 10:47
Já pensou em fazer a mudança de variável

? Com esta mudança

tende a zero quando

tende a

.Acrescentando mais uma dica ,também podemos reescrever

como
![x + [\pi -\pi] = [x-\pi] + \pi x + [\pi -\pi] = [x-\pi] + \pi](/latexrender/pictures/02f341febd0d778c2fd6e0a5326f303f.png)
.Assim ,

e
![sin(2x) = sin(2[[x-\pi] + \pi]) = sin(2\beta + 2\pi) = sin(2\beta) sin(2x) = sin(2[[x-\pi] + \pi]) = sin(2\beta + 2\pi) = sin(2\beta)](/latexrender/pictures/8183397c870a8a86677cede8c365c2e7.png)
.
Agora tente concluir e comente as dúvidas .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por tatianaCAL » Sáb Jun 22, 2013 12:59
Muito obrigada
Até tinha trocado a variável para o limite tender a zero, mas não tinha raciocinado x como x + (pi- pi).
O meu deu zero, pois multipliquei pelo conjugado, simplifiquei e ficou seno de 0 sobre 2cos 0 + 2 cos^2 0.
(Peço desculpas por não utilizar os códigos, mas estou no celular ai fica complicado)
-
tatianaCAL
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Jun 22, 2013 09:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia
- Andamento: cursando
por e8group » Sáb Jun 22, 2013 13:19
Não há de quê . O resultado limite realmente é zero ,e sua solução está correta .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6472 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4552 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4844 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7030 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4260 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.