• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indeterminação?

Indeterminação?

Mensagempor Rafael16 » Qui Jun 20, 2013 13:36

Olá, estou começando agora a estudar cálculo por conta própria, e vi a resolução do exercício abaixo, mas não entendi o porque que \lim_{x\rightarrow+\infty} (2^x) = +\infty. Um número qualquer elevado ao infinito num seria indeterminação?

\lim_{x\rightarrow + \infty} (\frac{2x+3}{x+1})^x = \lim_{x\rightarrow+\infty} (2^x) * e^{\frac{1}{2}} = +\infty
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Indeterminação?

Mensagempor temujin » Qui Jun 20, 2013 13:47

Na verdade, uma indeterminação é algo que não te diz exatamente como o limite vai se comportar. Por exemplo, se vc tiver um limite nas formas \frac{0}{0},\frac{\infty}{\infty}, 0.\infty, \infty - \infty

De imediato vc não consegue dizer como a função se comporta na região estudada.

No caso da sua função, uma base qualquer, constante, elevada a um número cada vez maior, cresce cada vez mais rápido. Faça uma tabelinha simples:

2^x, x=1,2,3,...

O que acontece com o valor da função?
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: Indeterminação?

Mensagempor Rafael16 » Qui Jun 20, 2013 14:52

Ah sim, entendi. Obrigado temujin!
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}