• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]sqrt(1+4x²)dx

[Integral]sqrt(1+4x²)dx

Mensagempor VenomForm » Qua Jun 19, 2013 13:57

Olá pessoal,
Alguém poderia me dizer se esta integral que resolvi está certa ou errada?
\int_{0}^{1}\sqrt[2]{1+4{x}^{2}}dx
Bom, vou postar o passa a passo que fiz.
2x=tg\Theta
x=\frac{{sec}^{2}\Theta}{2}
\frac{1}{2}\int_{}^{}\sqrt[2]{1+{tg}^{2}\Theta}{sec}^{2}\Theta d\Theta
\frac{1}{2}\int_{}^{}sec\Theta {sec}^{2}\Theta d\Thetasec\Theta tg\Theta - \int_{}^{}{sec}^{3}\Theta d\Theta+\int_{}^{}sec\Theta d\Theta
2\int_{}^{}{sec}^{3}\Theta=sec\Theta tg\Theta+ln\left|sec\Theta+tg\Theta \right|
\int_{}^{}{sec}^{3}\Theta=\frac{1}{2}\left[sec\Theta tg\Theta+ln\left|sec\Theta+tg\Theta \right| \right]
tg\Theta=2x
sec\Theta=\sqrt[2]{1+4{x}^{2}}
Substituindo,
\frac{1}{4}\left[\sqrt[2]{1+4{x}^{2}}2x+ln\left|\sqrt[2]{1+4{x}^{2}}+2x \right| \right]
Depois substitui o x=1 e subtrai por x=0 chegando no resultado de 0,75U.C
Editado pela última vez por VenomForm em Qui Jun 20, 2013 11:54, em um total de 1 vez.
VenomForm
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qua Fev 27, 2013 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Ciências da Computação
Andamento: cursando

Re: [Integral]sqrt(1+4x²)dx

Mensagempor VenomForm » Qui Jun 20, 2013 11:54

Dando 1 UP e corrigindo o resultado final
VenomForm
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qua Fev 27, 2013 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Ciências da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.