• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]sqrt(1+4x²)dx

[Integral]sqrt(1+4x²)dx

Mensagempor VenomForm » Qua Jun 19, 2013 13:57

Olá pessoal,
Alguém poderia me dizer se esta integral que resolvi está certa ou errada?
\int_{0}^{1}\sqrt[2]{1+4{x}^{2}}dx
Bom, vou postar o passa a passo que fiz.
2x=tg\Theta
x=\frac{{sec}^{2}\Theta}{2}
\frac{1}{2}\int_{}^{}\sqrt[2]{1+{tg}^{2}\Theta}{sec}^{2}\Theta d\Theta
\frac{1}{2}\int_{}^{}sec\Theta {sec}^{2}\Theta d\Thetasec\Theta tg\Theta - \int_{}^{}{sec}^{3}\Theta d\Theta+\int_{}^{}sec\Theta d\Theta
2\int_{}^{}{sec}^{3}\Theta=sec\Theta tg\Theta+ln\left|sec\Theta+tg\Theta \right|
\int_{}^{}{sec}^{3}\Theta=\frac{1}{2}\left[sec\Theta tg\Theta+ln\left|sec\Theta+tg\Theta \right| \right]
tg\Theta=2x
sec\Theta=\sqrt[2]{1+4{x}^{2}}
Substituindo,
\frac{1}{4}\left[\sqrt[2]{1+4{x}^{2}}2x+ln\left|\sqrt[2]{1+4{x}^{2}}+2x \right| \right]
Depois substitui o x=1 e subtrai por x=0 chegando no resultado de 0,75U.C
Editado pela última vez por VenomForm em Qui Jun 20, 2013 11:54, em um total de 1 vez.
VenomForm
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qua Fev 27, 2013 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Ciências da Computação
Andamento: cursando

Re: [Integral]sqrt(1+4x²)dx

Mensagempor VenomForm » Qui Jun 20, 2013 11:54

Dando 1 UP e corrigindo o resultado final
VenomForm
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qua Fev 27, 2013 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Ciências da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.