• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Subespaço Vetorial] Exercício .

[Subespaço Vetorial] Exercício .

Mensagempor e8group » Sex Jun 14, 2013 22:21

Poderiam corrigir minha solução por favor .Gostaria de sugestões .

Sejam F_1, \hdots , F_k \subset E subespaços vetorias .Prove :

(1) O subespaço gerado pela uniãoF_1 \cup \hdots \cup F_k é o conjunto F_1 + \hdots + F_k das somas x_1 + \hdots + x_k ,onde x_1 \in F_1 , \hdots , x_k \in F_k .

OBS.:

Para mostrar que O subespaço gerado pela união F_1 \cup \hdots \cup F_k é subconjunto de F_1 + \hdots + F_k mostrei de duas formas que ,são (a_1) e (a_2) .A demonstração que F_1 + \hdots + F_k é subconjunto do subespaço gerado pela união F_1 \cup \hdots \cup F_k encontra-se no item (b) .


Minha solução :

(a_1)

Seja M o subespaço gerado pela união F_1 \cup \hdots \cup F_k de subespaços de E .Vamos denotar M por S(F_1 \cup \hdots \cup F_k) .

Consideremos L =\{1,\hdots ,k\} e H conjunto de índices quaisquer satisfazendo ,



u = \sum_{j\in H} \beta_j z_j     \hspace{10mm}   \forall u \in M = S\left( \bigcup_{i\in L} F_i\right),  \forall z_j \in  \bigcup_{i\in L} F_i    , \forall \beta_j \in \mathbb{R} .

Como M:=S(F_1 \cup \hdots \cup F_k) ,temos que todos seus vetores são combinações lineares dos elementos de \bigcup_{i\in L} F_i .Em particular , se v_1, \hdots ,v_k \in M \implies \exists \alpha_{ij} \in \mathbb{R} satisfazendo ,


v_{i} = \sum_{j\in H}\alpha_{ij} y_{ji}  , \hspace{10mm} \forall i \in L  , y_{ji} \in \bigcup_{i\in L} F_i com y_{ji} \in F_i .

Pela hipótese de M e F_1, \hdots , F_k \subset E serem subespaços de E ,obtemos que

\sum_{i\in L} v_i \in M  , \alpha_{ij} y_{ji} \in F_i \implies \sum_{j\in H} \alpha_{ij} y_{ji} \in F_i , \forall i .Assim , tomando-se v=\sum_{i\in L} v_i e x_i = \sum_{j\in H} \alpha_{ij} y_{ji} , por


\sum_{i\in L} v_i = \sum_{i\in L}  \sum_{j\in H} \alpha_{ij} y_{ji} .

Resulta ,


v = \sum_{i\in L} x_i  = x_1 + \hdots + x_k com x_1 \in F_1 , \hdots , x_k \in F_k .

Assim , M:=S(F_1 \cup \hdots \cup F_k) \subset F_1 + \hdots + F_k .


(b) .

Reciprocamente ,tomando-se x_i quaisquer em F_1 \cup \hdots \cup F_k com x_i \in F_i  , \forall i \in L ,pela hipótese de F_1 \cup \hdots \cup F_k gerar M ,resulta que \sum_{i \in L} x_i \in M .Como estamos trabalhando com vetores genéricos , segue que F_1 \cup \hdots \cup F_k \subset M .Por (a_1),(b) , M = F_1 + \hdots +F_k .

Estou com pouco tempo para postar o item (a_2) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Subespaço Vetorial] Exercício .

Mensagempor e8group » Dom Dez 15, 2013 16:07

Olá já obtive ajuda em outro fórum ,minha solução parece correta embora confusa . Agradeço desde já .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: