• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Minimização de funções] Distância entre duas retas reversas

[Minimização de funções] Distância entre duas retas reversas

Mensagempor guisaulo » Sáb Jun 08, 2013 14:48

Considere as retas reversas r e s de equações
(x,y,z)=(0,0,2)+\lambda(1,2,0),\lambda\in R
e
(x,y,z)=(0,0,4)+\mu(1,1,1), \mu \in R
respectivamente. Determine P e Q, com P \in r e Q \in s, de modo que a distância de P e Q seja a menor possível.

Bem, essa questão esta na seção de máximos e mínimos do meu livro de cálculo de varias variaveis em que estudo. Embora tenha resposta abaixo, eu não consigo entender em como ele obteu a resposta, se alguem puder ajudar...

Resposta:
(\lambda,2\lambda,2) e (\mu,\mu,4+\mu) são pontos arbitrários de r e s, respectivamente:

\sqrt[]{{(\lambda-\mu)}^{2}+{(2\lambda-\mu)}^{2}+{(2+\mu)}^{2}} é a distância entre eles.
Basta, então, determinar (\lambda,\mu) que minimiza

g(\lambda,\mu)={(\lambda-\mu)}^{2}+{(2\lambda-\mu)}^{2}+{(2+\mu)}^{2}.
P=(-1,-2,2) e Q=(-\frac{5}{3},-\frac{5}{3},\frac{7}{3})
guisaulo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Nov 27, 2012 21:14
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando

Re: [Minimização de funções] Distância entre duas retas reve

Mensagempor young_jedi » Sáb Jun 08, 2013 15:51

ele calculou as derivadas parciais da função g com relação a lambda e a u e igualou a 0 obtendo duas equação de duas variáveis
com isso ele montou um sistema e encontrou os valores da variáveis

comente se tiver duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Minimização de funções] Distância entre duas retas reve

Mensagempor guisaulo » Sáb Jun 08, 2013 16:48

obrigado @young_jedi consegui resolver a questão
guisaulo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Nov 27, 2012 21:14
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}