por Thyago Quimica » Qua Mai 29, 2013 15:47
Pelo posicionamento no livro ela teve ser bem simples, mais não to conseguindo fazer. Resp.: 20/3
![\int_{1}^{4}\frac{1+x}{\sqrt[]{x}} dx \int_{1}^{4}\frac{1+x}{\sqrt[]{x}} dx](/latexrender/pictures/796281c52df68bc6cc5c9fd2a904937a.png)
-
Thyago Quimica
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Sáb Mai 05, 2012 17:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Química
- Andamento: cursando
por Lennon » Sáb Jun 08, 2013 03:01
-
Lennon
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Dom Mai 12, 2013 17:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Thyago Quimica » Sáb Jun 08, 2013 17:01
Obrigado pela ajuda Lennon
cheguei ao resultado, só não entendi como o

virou

que propriedade é essa ?
-
Thyago Quimica
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Sáb Mai 05, 2012 17:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Química
- Andamento: cursando
por Man Utd » Sáb Jun 08, 2013 18:08
Thyago Quimica escreveu:Obrigado pela ajuda Lennon
cheguei ao resultado, só não entendi como o

virou

que propriedade é essa ?
olá.

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [INTEGRAL] Soma de Riemann
por Aryane » Dom Jan 06, 2013 12:10
- 0 Respostas
- 1305 Exibições
- Última mensagem por Aryane

Dom Jan 06, 2013 12:10
Cálculo: Limites, Derivadas e Integrais
-
- [Integral]Soma de Riemann
por armando » Seg Ago 12, 2013 23:43
- 1 Respostas
- 1528 Exibições
- Última mensagem por Russman

Ter Ago 13, 2013 17:11
Cálculo: Limites, Derivadas e Integrais
-
- [Integral]Soma de Riemann
por armando » Seg Ago 12, 2013 23:48
- 0 Respostas
- 1078 Exibições
- Última mensagem por armando

Seg Ago 12, 2013 23:48
Cálculo: Limites, Derivadas e Integrais
-
- Integral e Soma Dupla de Riemann - Por Favor, Urgente!
por Bruhh » Seg Mai 09, 2011 20:17
- 5 Respostas
- 3498 Exibições
- Última mensagem por Bruhh

Ter Mai 10, 2011 19:33
Cálculo: Limites, Derivadas e Integrais
-
- Somas de Riemann
por andrerodrigues98 » Ter Dez 01, 2015 21:14
- 0 Respostas
- 1247 Exibições
- Última mensagem por andrerodrigues98

Ter Dez 01, 2015 21:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.