• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão da UNIFESP

Questão da UNIFESP

Mensagempor Jhennyfer » Seg Jun 03, 2013 00:50

Oi boa noite!
Por favor não poste a resolução, só me ajuda entrar no caminho do resultado (:

A questão é...
Se um arco de 60º num circulo I tem o mesmo comprimento de um arco de 40º num circulo II, então, a razão da área do circulo I pela área do circulo II é:
Bom fiz os calculos e até agora só consigo chegar no valor da circunferência
que é 3/2, eu acho.

Circulo I
\frac{2\pi R}{x}=\frac{360}{60}

x= \frac{\pi R}{3}

Circulo II
\frac{2\pi R}{x}=\frac{360}{40}

x= \frac{2\pi R}{9}

com isso a circunferência vale...
\frac{\pi R}{3}= \frac{2\pi R}{9} = \frac{3}{2}

Daí em diante já fiz várias tentativas mas nunca consigo chegar no resultado que é 4/9.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Questão da UNIFESP

Mensagempor Rafael16 » Seg Jun 03, 2013 11:21

Olá Jhennyfer

A gente sabe que a razão da área vai ser:

\frac{A_{1}}{A_{2}} = \frac{\Pi.R_{1} ^ 2}{\Pi.R_{2} ^ 2} = \frac{R_{1} ^ 2}{R_{2} ^ 2}

Temos agora que achar só a relação entre os raios.
Dica: Trabalhe com radianos.

Tente fazer agora, caso não consiga comenta ai.
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.