por LucasSG » Dom Jun 02, 2013 22:21
A piramide da figura tem por base um quadrado de lado 2. As arestas que contem o vertice V formam angulos de 45 com o plano do quadrado, e a base (

é positiva

Calcule
![[\vec{DC}, \vec{DA}/2, \vec{DV}] [\vec{DC}, \vec{DA}/2, \vec{DV}]](/latexrender/pictures/214c0245206bfc5d34f041898cd74e10.png)
(produto misto destes três vetores)
Bom, pra calcular o produto misto eu fiz (IIDCII*IIDA/2II*Sen(x))*IIDVII*cos(y)
Onde x é o angulo entre DC E DA e y o angulo entre o produto vetorial de DC e DA e DV.
O resultado obtido foi
![2.\sqrt[]{2} 2.\sqrt[]{2}](/latexrender/pictures/ddf6c53cdaf7bbc107f4017b1175e22f.png)
Mas o resultado do exercicio é
![-2.\sqrt[]{2} -2.\sqrt[]{2}](/latexrender/pictures/cd4c2d00aae30be84198313e10fdecf1.png)
Gostaria de ajuda pra saber onde eu errei na resolução.
Obrigado.
-
LucasSG
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Qua Mai 22, 2013 08:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por LuizAquino » Sex Jun 07, 2013 17:49
LucasSG escreveu:A piramide da figura tem por base um quadrado de lado 2. As arestas que contem o vertice V formam angulos de 45 com o plano do quadrado, e a base (

é positiva

- figura.png (28.08 KiB) Exibido 2175 vezes
Calcule
![[\vec{DC}, \vec{DA}/2, \vec{DV}] [\vec{DC}, \vec{DA}/2, \vec{DV}]](/latexrender/pictures/214c0245206bfc5d34f041898cd74e10.png)
(produto misto destes três vetores)
Bom, pra calcular o produto misto eu fiz (IIDCII*IIDA/2II*Sen(x))*IIDVII*cos(y)
Onde x é o angulo entre DC E DA e y o angulo entre o produto vetorial de DC e DA e DV.
O resultado obtido foi
![2.\sqrt[]{2} 2.\sqrt[]{2}](/latexrender/pictures/ddf6c53cdaf7bbc107f4017b1175e22f.png)
Mas o resultado do exercicio é
![-2.\sqrt[]{2} -2.\sqrt[]{2}](/latexrender/pictures/cd4c2d00aae30be84198313e10fdecf1.png)
Gostaria de ajuda pra saber onde eu errei na resolução.
Obrigado.
Use a Regra da Mão Direita e responda o seguinte: qual é o sentido do vetor

? Depois de aplicar esta regra, você deve concluir que o ângulo y entre este vetor e

é 135°. Considerando esta informação, tente concluir o exercício.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Produto escalar, Produto Vetorial e Produto Misto
por fernando7 » Qua Mai 23, 2018 17:29
- 0 Respostas
- 4646 Exibições
- Última mensagem por fernando7

Qua Mai 23, 2018 17:29
Geometria Analítica
-
- Produto Misto
por Felipe Ferraiol » Sex Jun 03, 2011 01:01
- 1 Respostas
- 2474 Exibições
- Última mensagem por LuizAquino

Sex Jun 03, 2011 09:43
Geometria Analítica
-
- [PRODUTO MISTO]
por LUAN UFPE » Qua Fev 27, 2013 15:58
- 1 Respostas
- 1933 Exibições
- Última mensagem por LUAN UFPE

Qua Fev 27, 2013 17:42
Geometria Analítica
-
- [Produto Misto] Geometria Analítica
por Thamiires » Sex Dez 02, 2011 21:27
- 1 Respostas
- 1690 Exibições
- Última mensagem por TheoFerraz

Sáb Dez 03, 2011 10:14
Geometria Analítica
-
- [Produto Misto] VOLUME DO PARALELEPIPEDO
por ubelima » Qua Mai 16, 2012 20:27
- 1 Respostas
- 4127 Exibições
- Última mensagem por LuizAquino

Sáb Mai 19, 2012 15:45
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.