por R0nny » Qui Mai 30, 2013 23:43
A taxa média de crescimento populacional num certo país é de 2,4% ao ano. Sabendo que a populaçao em 2010 é de 150 milhoes de habitantes, determine um valor aproximado para a populaçao no ano de 2017, supondo que a taxa se irá manter. Fonte: Exame extraórdinario(ETP-2013). Para começar nesse exercicio eu habilitei-me a por a fórmular o exercicios deste modo: Pn=P0(1+i)^n, logo temos a taxa em juros(i)=2,4%=0.024; temos o periodo(n)=2017; a capital inicial(P0/C0)=150milhoes de Mt; O gabarito é: 177 milhoes de Mt, onde será que estou falhando?
-
R0nny
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Dom Abr 28, 2013 10:53
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: Estudante
- Andamento: cursando
por temujin » Sex Mai 31, 2013 00:58
O período é 7. (2017 - 2010).
-
temujin
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Qui Mar 14, 2013 15:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Exponenciais
por Souo » Ter Jun 30, 2015 01:42
- 3 Respostas
- 2516 Exibições
- Última mensagem por nakagumahissao

Sex Jul 03, 2015 21:24
Logaritmos
-
- Exponenciais
por Souo » Sáb Jun 20, 2015 14:45
- 1 Respostas
- 1655 Exibições
- Última mensagem por Cleyson007

Dom Jun 21, 2015 09:20
Logaritmos
-
- Exponenciais
por Souo » Qui Jun 18, 2015 19:09
- 1 Respostas
- 1563 Exibições
- Última mensagem por nakagumahissao

Sex Jun 19, 2015 18:50
Logaritmos
-
- Exponenciais
por Souo » Qui Jun 18, 2015 00:20
- 2 Respostas
- 1902 Exibições
- Última mensagem por Souo

Qui Jun 18, 2015 19:04
Logaritmos
-
- Limites exponenciais
por lunayanne » Dom Mar 07, 2010 00:15
- 2 Respostas
- 3223 Exibições
- Última mensagem por lucas92

Ter Abr 13, 2010 03:57
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.