• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite]será que existe assintota vertical aqui?

[Limite]será que existe assintota vertical aqui?

Mensagempor marcosmuscul » Ter Mai 21, 2013 12:03

seja {D}_{f(x)} = x \in \Re , x > a

\lim_{x \rightarrow {a}^{+}} f(x) = \infty

existe ou não assintota vertical em x = a?

fiquei na duvida pois no livro da dizendo que pra existir limite infinito, ou seja , assintota vertical, o limite precisa ir ao infinito positivo ou negativo tanto pela direita quanto pela esquerda de a.


outra duvida é:
Em relação a uma função definida para x diferente de a.
se pela esquerda o limite é infinito negativo e pela esquerda é infinito positivo. Posso dizer que existe assíntota vertical?
marcosmuscul
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Mar 19, 2013 15:48
Localização: RJ
Formação Escolar: ENSINO MÉDIO
Área/Curso: a começar engenharia civil
Andamento: cursando

Re: [Limite]será que existe assintota vertical aqui?

Mensagempor LuizAquino » Dom Mai 26, 2013 02:48

marcosmuscul escreveu:seja {D}_{f(x)} = x \in \Re , x > a

\lim_{x \rightarrow {a}^{+}} f(x) = \infty

existe ou não assintota vertical em x = a?


Sim, existe.

Por definição, dizemos que a reta x = a é uma assíntota vertical do gráfico da função f se qualquer um dos dois casos abaixo acontecer:

(i) \lim_{x\to a^-} f(x) = \infty

(ii) \lim_{x\to a^+} f(x) = \infty

Em outras palavras, note que x = a será uma assíntota vertical quando qualquer um dos limites laterais for infinito.

Observação: aqui o símbolo \infty pode ser +\infty ou -\infty dependendo do caso.

marcosmuscul escreveu:fiquei na duvida pois no livro da dizendo que pra existir limite infinito, ou seja , assintota vertical, o limite precisa ir ao infinito positivo ou negativo tanto pela direita quanto pela esquerda de a.


Você está confundindo dois conceitos diferentes: existir o limite (e ele ser igual a infinito); ter uma assíntota vertical.

Para ter uma assíntota vertical, basta respeitar a definição apresentada anteriormente.

Já para existir o limite, devemos ter que seus laterais são iguais.

Em outras palavras, temos que \lim_{x\to a} f(x) existe e é igual a L, quando ocorrer \lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = L . Aqui não importa se L representa um número real fixo ou o conceito de infinito.

Por exemplo, para que \lim_{x\to a} f(x) exista e seja igual a +\infty, devemos ter \lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = +\infty .

marcosmuscul escreveu:outra duvida é:
Em relação a uma função definida para x diferente de a.
se pela esquerda o limite é infinito negativo e pela esquerda é infinito positivo. Posso dizer que existe assíntota vertical?


Eu presumo que você quis dizer "(...) e pela direita é infinito positivo (...)".

Neste caso, observando a definição de reta assíntota, então a resposta é sim.

Mas note que neste caso, analisando a existência do limite, temos que o limite quando x tende para a não existe.

Por exemplo, na função f(x) = \dfrac{1}{x - 1} temos que:

(i) x = 1 é uma assíntota vertical;

(ii) Não existe \lim_{x\to 1} f(x) .

Observação

Eu gostaria de sugerir que você assista as videoaulas "03. Cálculo I - Limites Laterais" e "05. Cálculo I - Limites Infinitos". Elas estão disponíveis na página do meu projeto:

http://www.lcmaquino.org/

Eu espero que essas videoaulas possam lhe ajudar a entender melhor os conceitos.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?