• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Independencia Linear] Prova

[Independencia Linear] Prova

Mensagempor LucasSG » Qua Mai 22, 2013 08:31

Prove:

(2\vec{u}+\vec{w}, \vec{u}-\vec{v}, \vec{v}+\vec{w}) L.I. \Leftrightarrow\ (\vec{u}-\vec{w}, \vec{u}+\vec{v}, \vec{u}+\vec{w}) L.I.

Pessoal, estou precisando muito de ajuda neste exercicio, agradeço muito se alguem puder me mostrar uma maneira de resolver. O exercicio pede pra supor que o primeiro conjunto é L.I. e depois provar que o segundo é tambem, e após isso fazer a volta(Não sei se a minha notação ficou clara)

Muito obrigado desde já.
LucasSG
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 22, 2013 08:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Independencia Linear] Prova

Mensagempor e8group » Sáb Mai 25, 2013 12:54

(\Rightarrow)

Se a sequência (2u+w,u-v,v+w) de vetores é L.I ,segue-se pela definição de Independência linear que (2u+w,u-v,v+w) é L.I \iff a equação \gamma_1 (2u+w)  + \gamma_2 (u-v) + \gamma_3 (v+w) = 0^* admite apenas solução trivial , que é \gamma_1 =\gamma_2 = \gamma_3 = 0 .Onde , 0^* denota-se o vetor nulo .
Mas ,devido aos axiomas do espaço vetorial ,claramente

\gamma_1 (2u+w)  + \gamma_2 (u-v) + \gamma_3 (v+w) = 0^* \implies  \gamma_1 (u-w)  + \gamma_2 (u+v) + \gamma_3 (u+w) = 0^* \implies  (u-w,u+v,u+w) é L.I . (Verifique !)

(\Leftarrow)


Suponha que (u-w,u+v,u+w) é L.I , deveremos mostrar que (2u+w,u-v,v+w) também será L.I . Fica como exercício .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59