• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Calculo de limite usando o teorema do confronto.

[Limites] Calculo de limite usando o teorema do confronto.

Mensagempor erickm93 » Qua Mai 22, 2013 10:48

Olá, recentemente tive uma prova de Cálculo I e me surgiu uma duvida sobre a seguinte questão
Calcular o limite seguinte, utilizando o teorema do confronto, e provar sua existência através dos limites laterais, segue o limite:
\lim_{x\to0}{\sqrt{x}.\sin{(\frac{1}{x})}}

Utilizei o Wolfram Alpha para calcular este limite e ele me voltou a resposta como sendo 0, só que, minha professora corrigiu a prova e disse que este limite não existe. Minha dúvida é, qual das duas respostas está correta?

Obrigado desde já.
erickm93
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Mai 22, 2013 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Física
Andamento: cursando

Re: [Limites] Calculo de limite usando o teorema do confront

Mensagempor Man Utd » Qua Mai 22, 2013 12:21

na minha opinião \lim_{x\to0}{\sqrt{x}.\sin{(\frac{1}{x})}}, existe sim, pois pelo teorema do confronto e lembrando que a função seno é limitada em -1 e 1.
\\\\ -1\leq sen a \geq 1 \\\\ -1\leq sen(\frac{1}{x})\leq 1 \\\\ -1.\sqrt{x}\leq \sqrt{x}*sen(\frac{1}{x})\leq \sqrt{x}*1 \\\\ \lim_{x\rightarrow 0}-\sqrt{x}=0 \\\\ \lim_{x\rightarrow 0}\sqrt{x}=0 \\\\ entao pelo teorema do confronto,\lim_{x\rightarrow 0}\sqrt{x}*sen(\frac{1}{x})=0

porém \lim_{x\rightarrow 0}sen(\frac{1}{x}) não existe pois a função oscila,veja que limites laterais diferem muito:
x=0,00000001----------f(x)=sen(1/x)=-0,98...
x=0.00000002----------f(x)=sen(1/x)=-0,64...
x=0.00000003----------f(x)=sen(1/x)=-0,54...
x=0.00000004----------f(x)=sen(1/x)=0,34
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Limites] Calculo de limite usando o teorema do confront

Mensagempor LuizAquino » Qua Mai 22, 2013 20:27

erickm93 escreveu:Olá, recentemente tive uma prova de Cálculo I e me surgiu uma duvida sobre a seguinte questão
Calcular o limite seguinte, utilizando o teorema do confronto, e provar sua existência através dos limites laterais, segue o limite:
\lim_{x\to0}{\sqrt{x}.\sin{(\frac{1}{x})}}

Utilizei o Wolfram Alpha para calcular este limite e ele me voltou a resposta como sendo 0, só que, minha professora corrigiu a prova e disse que este limite não existe. Minha dúvida é, qual das duas respostas está correta?

Obrigado desde já.


Man Utd escreveu:na minha opinião \lim_{x\to0}{\sqrt{x}.\sin{(\frac{1}{x})}}, existe sim, pois pelo teorema do confronto e lembrando que a função seno é limitada em -1 e 1.
\\\\ -1\leq sen a \geq 1 \\\\ -1\leq sen(\frac{1}{x})\leq 1 \\\\ -1.\sqrt{x}\leq \sqrt{x}*sen(\frac{1}{x})\leq \sqrt{x}*1 \\\\ \lim_{x\rightarrow 0}-\sqrt{x}=0 \\\\ \lim_{x\rightarrow 0}\sqrt{x}=0 \\\\ entao pelo teorema do confronto,\lim_{x\rightarrow 0}\sqrt{x}*sen(\frac{1}{x})=0

porém \lim_{x\rightarrow 0}sen(\frac{1}{x}) não existe pois a função oscila,veja que limites laterais diferem muito:
x=0,00000001----------f(x)=sen(1/x)=-0,98...
x=0.00000002----------f(x)=sen(1/x)=-0,64...
x=0.00000003----------f(x)=sen(1/x)=-0,54...
x=0.00000004----------f(x)=sen(1/x)=0,34


Existe um motivo muito simples para este limite não existir: o limite lateral esquerdo não está definido.

Notem que no termo \sqrt{x} não podemos ter x\to 0^-, já que no conjunto dos números reais não temos a raiz quadrada de um número x < 0 (e vale lembrar que estamos tratando em Cálculo I apenas de funções reais).

Quando o referido programa calculou este limite, ele na verdade apenas considerou o limite lateral direito. Ou seja, na verdade ele calculou:

\lim_{x\to 0^+}{\sqrt{x}\sin \frac{1}{x}}

Observação

Este exercício é interessante para ilustrar que não se pode acreditar cegamente em um programa de computador. A pessoa que está usando o programa deve fazer uma interpretação dos dados para avaliar se a resposta fornecida é coerente.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Limites] Calculo de limite usando o teorema do confront

Mensagempor erickm93 » Qua Mai 22, 2013 23:49

Obtive uma resposta de um colega que também achei interessante, ele me disse que o Wolfram calcula limites no conjunto dos complexos, por isso quando o mandei calcular aquele limite ele me retornou a resposta 0.
Agora com a sua resposta de que em Calculo I trabalhamos somente no conjunto dos reais, ficou ainda mais claro em minha mente a resposta para a dúvida que havia me surgido.
Agradeço pela atenção, abraços e até a próxima.
erickm93
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Mai 22, 2013 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Física
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D