por guisaulo » Sáb Mar 30, 2013 18:10
Prove que

ou

não é um quadrado perfeito. Sua prova e construtiva ou não construtiva?
Sei que quadrado perfeito é um número inteiro não negativo que pode ser expresso como o quadrado de um outro número inteiro. Ex: 1, 4, 9...
Porém, não consigo montar uma estrategia para provar essa sentença...
-
guisaulo
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Ter Nov 27, 2012 21:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: TI
- Andamento: cursando
por e8group » Sáb Mar 30, 2013 21:17
Bom meu conhecimento em teoria dos números é nulo ,mas vamos tentar . Suponha que exista algum

natural tal que

.Sabemos que

e que

. Assim ,

e isto equivale a dizer que

e ainda

.Ao extrairmos a raiz quadrada de ambos membros deveríamos obter algum

natural ,mas isto não acontece ,pois ,

.De

ser irracional e por

não ser divísel por

,resulta que

não é natural que contradiz a hipótese ,sendo assim ,

não é um quadrado perfeito .Se a resolução estiver correta , o outro caso é análogo ...
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Vanderlucio » Qua Mai 22, 2013 21:16
Todo número é da forma

ou

. Logo, todo quadrado é da forma

ou

, ou seja, só pode deixar resto

ou resto

na divisão por

. Mas o número

, evidentemente, deixa resto

quando dividido por

e, portanto não pode ser um quadrado perfeito.
-
Vanderlucio
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Mai 22, 2013 19:53
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ensino médio
- Andamento: cursando
Voltar para Teoria dos Números
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Trinomio Quadrado Perfeito (Complemento de quadrado)
por IgorFilipe » Qua Ago 17, 2011 23:01
- 2 Respostas
- 3617 Exibições
- Última mensagem por IgorFilipe

Qui Ago 18, 2011 15:52
Funções
-
- Quadrado Perfeito?
por Molina » Qui Nov 25, 2010 17:00
- 6 Respostas
- 6474 Exibições
- Última mensagem por pedroaugustox47

Sex Mai 11, 2012 16:28
Desafios Difíceis
-
- Quadrado perfeito
por guillcn » Ter Abr 05, 2011 19:15
- 2 Respostas
- 2365 Exibições
- Última mensagem por guillcn

Ter Abr 05, 2011 19:54
Álgebra Elementar
-
- Ajuda com quadrado perfeito
por joaoalbertotb » Ter Ago 25, 2009 13:01
- 2 Respostas
- 2191 Exibições
- Última mensagem por joaoalbertotb

Qua Ago 26, 2009 12:20
Trigonometria
-
- Trinômio Quadrado Perfeito
por Balanar » Ter Ago 10, 2010 22:48
- 2 Respostas
- 4818 Exibições
- Última mensagem por DanielFerreira

Dom Jan 08, 2012 18:05
Desafios Difíceis
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.