O número 12 é o mdc entre os números 360, a e b tomados dois a dois,sabendo que 100<a<200, e que 100<b<200. Pode-se afirmar que a+b vale:
A)204
B)228
C)288
D)302
E)372

, e nove não é primo, isto é, devemos multiplicar 12 por um número que seja primo, para não correr o risco de o MDC não ser 12.





danjr5 escreveu:...no entanto,, e nove não é primo, isto é, devemos multiplicar 12 por um número que seja primo, para não correr o risco de o MDC não ser 12.


Voltar para Teoria dos Números
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)