• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sistemas Lineares] Duvida de como resolver!!

[Sistemas Lineares] Duvida de como resolver!!

Mensagempor filipe reis farias » Sáb Mai 18, 2013 15:28

Boa tarde. Meu nome e filipe reis farias.

Galera, estou com duvide de como resolver esse exercicio de sistema linear, observem"

1)Tres amigos, Alberto, Bento e Cesar, colecionam figurinhas de jogadores de futebol das selecoes da Copa do mundo. Descubra a quantidade de figurinhas que cada um possui apartir das informacoes seguintes.

-> Se Alberto der a Bento cinco figurinhas, eles passarao a ter a mesma quantidade.

-> Se Bento perder 25% de seu total de figurinhas, ficara com cinco figurinhas a menos que Cesar.

-> Se Cesar receber a decima parte das figurinhas de alberto, ficara com a mesma quantidade que bento.

Bom, Como o forum quer que eu mostre a minha tentativa de resolucao, entao vamos la:

Eu Interpretei assim, observem:

A-5 = B+5
B-B/4 = C-5
C+A/10 = B

Eu tentei pelo metodo de substituicao, porem, nao deu certo. Depois tentei escalonar e acabou dando errado, tambem.

Ajudem-me
filipe reis farias.[color=#4000FF][/color]
filipe reis farias
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mai 15, 2013 23:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cursando 3 ano do ensino media. somente.
Andamento: cursando

Re: [Sistemas Lineares] Duvida de como resolver!!

Mensagempor DanielFerreira » Dom Mai 19, 2013 20:03

Filipe,
boa noite! Seja bem-vindo!!

Interpretou corretamente!

Acredito que pelo método da substituição seja o mais simples, veja:

Equação I:

\\ a - 5 = b + 5 \\ a = 5 + b + 5 \\ a = b + 10


Equação II:

\\ b - \frac{b}{4} = c - 5 \\\\ 4b - b = 4c - 20 \\ 3b + 20 = 4c \\\\ c = \frac{3b + 20}{4}


Equação III:

\\ c + \frac{a}{10} = b \\\\ 10c + a = 10b \\\\ \cancel{10}^5 \times \frac{3b + 20}{\cancel{4}^2} + (b + 10) = 10b \\\\ \frac{5(3b + 20)}{2} + b + 10 = 10b \\\\ 15b + 100 + 2b + 20 = 20b \\ 15b + 2b - 20b = - 100 - 20 \\ - 3b = - 120 \\ \boxed{b = 40}

Creio que consegue finalizar. Caso contrário, retorne!!

Att,

Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?