por Josi » Ter Nov 03, 2009 17:31
Tenho um trabalho com a questão abaixo:
* Um fio de 12 cm pode ser curvado formando um círculo, dobrado formando um quadrado ou cortado em duas partes fazendo um círculo e um quadrado. Quanto do fio deve ser usado para o círculo para que a área total englobada pela(s) figura(s) seja:
a) máxima?
b) mínima?
Já tentei resolver de várias formas, mas os resultados estão sem lógica, como área negativa, comprimento maior que 12, entre outros... Não sou muito boa com fórmulas geométricas, então se alguém puder me ajudar fico muito grata...
-
Josi
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Set 10, 2009 16:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
por Elcioschin » Qua Nov 04, 2009 08:40
Corte o fio em dois pedaços: um de comprimento x (para o círculo) e o outro de comprimento (12 - x) para o quadrado.
Seja R o raio do círculo ----> 2*pi*R = x ------> R = x/2*pi -----> Sc = pi*R² -----> Sc = pi*(x/2*pi)² ----> Sc = x²/4*pi
Seja L o lado do quadrado ----> L = (12 - x)/4 ----> Sq = L² ----> Sq = [(12 - x)/4]² -----> Sq = x²/16 - 3x/2 + 9
S = Sc + Sq -----> S = x²/4*pi + x²/16 - 3x/2 + 9 -----> Derivando e igualando a zero:
S' = x/2*pi + x/8 - 3/2 ------> x*(1/2*pi + 1/8) - 3/2 = 0 ----> x*(pi + 4)/8*pi = 3/2 -----> x = 12*pi/(pi + 4)
Esta é a área máxima (derivada 2ª < 0)
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Aplicações de Derivada - Problemas de Otimização - Socorro!!
por Josi » Ter Nov 03, 2009 17:30
- 1 Respostas
- 2702 Exibições
- Última mensagem por marciommuniz

Ter Nov 03, 2009 22:30
Cálculo: Limites, Derivadas e Integrais
-
- Problemas de Otimização
por lucasabreuo » Seg Mai 06, 2019 11:52
- 0 Respostas
- 2072 Exibições
- Última mensagem por lucasabreuo

Seg Mai 06, 2019 11:52
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda com problemas de otimização
por sergioluizom » Ter Abr 17, 2012 16:15
- 1 Respostas
- 9065 Exibições
- Última mensagem por LuizAquino

Sex Abr 20, 2012 19:10
Cálculo: Limites, Derivadas e Integrais
-
- Aplicações da Derivada
por Bruhh » Qua Jun 02, 2010 19:00
- 2 Respostas
- 4690 Exibições
- Última mensagem por Bruhh

Sáb Jun 05, 2010 18:25
Cálculo: Limites, Derivadas e Integrais
-
- Aplicações da Derivada
por Thyago Quimica » Seg Out 29, 2012 18:44
- 1 Respostas
- 2780 Exibições
- Última mensagem por e8group

Seg Out 29, 2012 19:15
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.