• Anúncio Global
    Respostas
    Exibições
    Última mensagem

trigonometria

trigonometria

Mensagempor andre barros » Dom Mai 12, 2013 10:54

Um estudante de engenharia vê um prédio do campus da UFSM construído em um terreno plano, sob um ângulo de 30º. Aproximando-se do prédio mais 40 m, passa a vê-lo sob um ângulo de 60º. Considerando que a base do prédio está no mesmo nível dos olhos do estudante, então a altura h do prédio é igual a:


Gostaria de saber, como posso interpretar esse exercicio?
andre barros
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 30, 2013 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: eng. mecânica
Andamento: cursando

Re: trigonometria

Mensagempor Cleyson007 » Dom Mai 12, 2013 12:56

André, nesse link você encontrará diversas formas de resolver o exercício proposto. Espero que lhe ajude!

http://br.answers.yahoo.com/question/in ... 339AAwoAY5
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}