• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Definição intuitiva para Integral

Definição intuitiva para Integral

Mensagempor Jhenrique » Sáb Mai 11, 2013 19:27

Fala pessoal, blz!?

Em primeiro lugar, faz sentido integrar uma grandeza y (com relação a uma x) que não seja derivada?

Por exemplo

Q=\int I\;dt=\int \frac{dQ}{dt}\;dt

Que significa a quantidade total de carga elétrica fornecida por uma corrente elétrica dentro de um intervalo de tempo.

E=\int P\;dt=\int \frac{dE}{dt}\;dt

Que significa a quantidade total de energia fornecida por um equipamento dentro de dentro de um intervalo tempo.

Nos dois casos, os integrandos P e E são taxas... Não me lembro de nenhum exemplo interessante de integração que não envolva taxas...

Ademais, a razão entre duas grandezas e a derivada entre as mesmas recebem definições diferenciadas, por exemplo

z_m=\frac{y}{x}=\text{tx de variacao media}

z_i=\frac{dy}{dx}=\text{tx de variacao instantanea}

de modo que z_m\neq z_i

Analogamente, não existe uma definições diferentes para estes dois tipos de produto y\times \Delta x e \int y\;dx ? Afinal, eles também não coincidem necessariamente.

E aliás, é correto definir \int y\;dx como a quantidade total de unidades duma grandeza y contida no intervalo duma grandeza x. Parece boa a definição? Alguém tem algo melhor em mente?

Obg!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.