por Jhenrique » Qui Mai 09, 2013 20:34
Fala pessoal, blz!?
Dúvida: vejam este vídeo:
http://www.youtube.com/watch?v=FEnNgUfE0qM?t=2m55s. Notem que a equação diferencial,

, é solucionada integrando-se os dois membros da igualdade, assim:

. Ok...
No entanto, lembrando que a definição de integral é

, pergunto: ao adicionar o sinal

na equação, não faltou adicionar o sinal

também? Quero dizer, o

e o

da equação

não são das integrais, eles já estavam aí antes das integrais aparecerem:

. Como me explicam isto?
Obg!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por Russman » Qui Mai 09, 2013 23:06
Na verdade existem várias interpretações para as integrais. São somatórios, são operadores, etc...
O método de resolver as eq. df. dessa forma é um exemplo onde a integral é aplicada como operador inverso ao operador diferencial. A forma que é exposta a solução é uma forma operacional, e não formal. Seria necessário estudar melhor esse tipo de equação para deduzir-seque a sua solução pode ser tomada dessa forma. Mas acredito que a interpretação da integral como operador lhe esclarece um pouco o método, não?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Jhenrique » Sex Mai 10, 2013 10:25
Esclarece +/- pois isso parece implicar no seguinte... suponha a equação

, então tanto faz integrar assim

ou assim

"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por Russman » Sex Mai 10, 2013 10:37
Não faz sentido aplicar a interal em funções isoladadas! Você precisa ter o diferencial de algo, pois a integral é o limite de uma soma de variações de uma dada variável. Estude a obtenção da área de curvas no plano que você vai entender o que estou dizendo.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Jhenrique » Sex Mai 10, 2013 17:11
Tô sacando...
Outra possibilidade para a mesma equação

é dividi-la por um diferencial qualquer, assim

. Correto?
E se a equação fosse esta

, então acho que é possível multiplicá-la por um diferencial qualquer, assim

, OU aplicar o diferencial no numerador assim

. Certo?
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
por Russman » Sex Mai 10, 2013 22:03
Mas qual o intuito de dividí-la pelo diferencial? Não se esqueça que os diferenciais de y e x não são independentes, pois y é função de x. A última relação que voce escreveu não é correta. Essas manipulações dos diferenciais como se fossem variáveis algébricas só podem ser assim por uma razão bem definida...se fossem derivadas parciais a manipulação de ''passa pra um lado multiplicando e pro outro dividindo'' não funciona. Cuidado.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Jhenrique » Sáb Mai 11, 2013 15:36
O intúito é de tomar ciência de todos os casos possíveis, de saber quais são as alternativas que esta ferramenta (ED) me fornece. Para evitar pasmos, como o do operador de integração, p ex.
Agora eu consegui enxergar que integração e derivação são operações que combinam necessariamente duas variáveis e dois operadores. O que está obscuro para mim, é saber quando a manipulação desses elementos altera a igualdade...
Por exemplo, tomando a seguinte equação

É verdade que

e que

Mas não é verdade que

ou que

Fiquei confuso...
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
-
Jhenrique
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Dom Mai 15, 2011 22:37
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico em Mecânica
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- separação de variáveis
por Thais Bomfim » Qua Dez 12, 2012 14:07
- 3 Respostas
- 2183 Exibições
- Última mensagem por Thais Bomfim

Qui Dez 13, 2012 00:22
Equações
-
- PVI- Separação de variáveis
por Crist » Sex Mar 15, 2013 21:43
- 1 Respostas
- 1615 Exibições
- Última mensagem por e8group

Sáb Mar 16, 2013 14:34
Equações Diferenciais Ordinárias e Aplicações
-
- Integral com separação de variáveis
por fernando ribeiro » Seg Nov 16, 2015 23:56
- 0 Respostas
- 1818 Exibições
- Última mensagem por fernando ribeiro

Seg Nov 16, 2015 23:56
Cálculo: Limites, Derivadas e Integrais
-
- [Achar limites de integração] Mudança de variáveis
por AlexandreTS » Sex Mar 30, 2012 18:01
- 1 Respostas
- 4846 Exibições
- Última mensagem por LuizAquino

Sex Mar 30, 2012 18:48
Cálculo: Limites, Derivadas e Integrais
-
- [Integração por Partes] Constante de integração
por KleinIll » Dom Set 01, 2019 14:11
- 2 Respostas
- 5785 Exibições
- Última mensagem por KleinIll

Sex Set 06, 2019 18:39
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.