• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Separação de variáveis e Integração

Separação de variáveis e Integração

Mensagempor Jhenrique » Qui Mai 09, 2013 20:34

Fala pessoal, blz!?

Dúvida: vejam este vídeo: http://www.youtube.com/watch?v=FEnNgUfE0qM?t=2m55s. Notem que a equação diferencial, (2y+1)dy=(2x)dx, é solucionada integrando-se os dois membros da igualdade, assim: \int (2y+1)dy=\int (2x)dx. Ok...

No entanto, lembrando que a definição de integral é \int f(x)dx, pergunto: ao adicionar o sinal \int na equação, não faltou adicionar o sinal dx também? Quero dizer, o dx e o dy da equação \int (2y+1)dy=\int (2x)dx não são das integrais, eles já estavam aí antes das integrais aparecerem: (2y+1)dy=(2x)dx. Como me explicam isto?

Obg!
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Separação de variáveis e Integração

Mensagempor Russman » Qui Mai 09, 2013 23:06

Na verdade existem várias interpretações para as integrais. São somatórios, são operadores, etc...

O método de resolver as eq. df. dessa forma é um exemplo onde a integral é aplicada como operador inverso ao operador diferencial. A forma que é exposta a solução é uma forma operacional, e não formal. Seria necessário estudar melhor esse tipo de equação para deduzir-seque a sua solução pode ser tomada dessa forma. Mas acredito que a interpretação da integral como operador lhe esclarece um pouco o método, não?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Separação de variáveis e Integração

Mensagempor Jhenrique » Sex Mai 10, 2013 10:25

Esclarece +/- pois isso parece implicar no seguinte... suponha a equação y = \gamma, então tanto faz integrar assim \int y =\int \gamma ou assim \int y dx=\int \gamma dx
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Separação de variáveis e Integração

Mensagempor Russman » Sex Mai 10, 2013 10:37

Não faz sentido aplicar a interal em funções isoladadas! Você precisa ter o diferencial de algo, pois a integral é o limite de uma soma de variações de uma dada variável. Estude a obtenção da área de curvas no plano que você vai entender o que estou dizendo.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Separação de variáveis e Integração

Mensagempor Jhenrique » Sex Mai 10, 2013 17:11

Tô sacando...

Outra possibilidade para a mesma equação (2y+1)dy=(2x)dx é dividi-la por um diferencial qualquer, assim
(2y+1)\frac{dy}{d...}=(2x)\frac{dx}{d...} . Correto?

E se a equação fosse esta (2y+1)\frac{1}{dx}=(2x)\frac{1}{dy} , então acho que é possível multiplicá-la por um diferencial qualquer, assim (2y+1)\frac{d...}{dx}=(2x)\frac{d...}{dy} , OU aplicar o diferencial no numerador assim \frac{d(2y+1)}{dx}=\frac{d(2x)}{dy} . Certo?
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Separação de variáveis e Integração

Mensagempor Russman » Sex Mai 10, 2013 22:03

Mas qual o intuito de dividí-la pelo diferencial? Não se esqueça que os diferenciais de y e x não são independentes, pois y é função de x. A última relação que voce escreveu não é correta. Essas manipulações dos diferenciais como se fossem variáveis algébricas só podem ser assim por uma razão bem definida...se fossem derivadas parciais a manipulação de ''passa pra um lado multiplicando e pro outro dividindo'' não funciona. Cuidado.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Separação de variáveis e Integração

Mensagempor Jhenrique » Sáb Mai 11, 2013 15:36

O intúito é de tomar ciência de todos os casos possíveis, de saber quais são as alternativas que esta ferramenta (ED) me fornece. Para evitar pasmos, como o do operador de integração, p ex.

Agora eu consegui enxergar que integração e derivação são operações que combinam necessariamente duas variáveis e dois operadores. O que está obscuro para mim, é saber quando a manipulação desses elementos altera a igualdade...

Por exemplo, tomando a seguinte equação \frac{x\times y}{z}=\frac{y\times x}{z}

É verdade que \frac{d(x\times y)}{dz}=\frac{d(y\times x)}{dz}

e que \frac{\int x\;dy}{z}=\frac{\int x\;dy}{z}

Mas não é verdade que \frac{x\times dy}{dz}=\frac{y\times dx}{dz}

ou que \frac{\int x\;dy}{z}=\frac{\int y\;dx}{z}

Fiquei confuso...
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?