• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação segmentária

Equação segmentária

Mensagempor GABRIELA » Qui Out 01, 2009 19:31

Me ensina como determinar a equação geral e a segmentária da seguinte questão?

Tem um gráfico ( eu não sei fazer aqui)

Mas y (0,3) x (2,0)

O gráfico é decrescente ligado nos pontos positivos de xy (quadrante 1) na reta tem a letra r (perto do y)

não sei se assim vcs entendem o gráfico.. :-O
GABRIELA
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 73
Registrado em: Seg Ago 31, 2009 17:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação segmentária

Mensagempor Cleyson007 » Ter Nov 03, 2009 20:09

Olá, boa noite!

Imagem

Qualquer dúvida, comente :y:

Até mais.
Editado pela última vez por Cleyson007 em Ter Nov 03, 2009 20:28, em um total de 1 vez.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação segmentária

Mensagempor Cleyson007 » Ter Nov 03, 2009 20:21

[img]http://img402.imageshack.us/img402/2927/analitica.jpg
[/img]
QUALQUER DÚVIDA COMENTE!
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação segmentária

Mensagempor felipeuf » Qui Abr 24, 2014 00:32

bom concluindo, x/2 + y/3 = 1 forma segmentaria x/2 + y/3 =1 ( multiplica tudo por 3 ) 3/2 x + y = 3 y= -3/2x +3 forma reduzida 3/2x +y -3 forma geral
felipeuf
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 24, 2014 00:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: enem; eng eletrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}