• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[SIMPLIFICAÇÃO] Simplificação expoentes

[SIMPLIFICAÇÃO] Simplificação expoentes

Mensagempor brunnkpol » Ter Mai 07, 2013 17:00

Simplificando-se \left({2}^{-2/3}-{3}^{-2/3} \right).\left(\sqrt[3]{3}-\sqrt[3]{2} \right)^{-1}.\sqrt[3]{36}, obtém-se:

Reposta: {2}^{1/3}+{3}^{1/3}

Tentei desenvolver as raízes só que não sei como racionalizar o \frac{1}{\sqrt[3]{3}-\sqrt[3]{2}}.
Queria outras técnicas de resolução.
Agradeço desde já.
brunnkpol
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Mai 07, 2013 16:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [SIMPLIFICAÇÃO] Simplificação expoentes

Mensagempor DanielFerreira » Sex Mai 10, 2013 00:40

\\ \left ( 2^{- \frac{2}{3}} - 3^{- \frac{2}{3}} \right ) \cdot \left ( \sqrt[3]{3} - \sqrt[3]{2} \right )^{- 1} \cdot \sqrt[3]{36} = \\\\\\ \left ( \frac{1}{2^{\frac{2}{3}}} - \frac{1}{3^{\frac{2}{3}}}\right ) \cdot \left ( \frac{1}{\sqrt[3]{3} - \sqrt[3]{2}} \right ) \cdot \sqrt[3]{36} = \\\\\\ \left ( \frac{1}{\sqrt[3]{2^2}} - \frac{1}{\sqrt[3]{3^2}} \right ) \cdot \left ( \frac{1}{\sqrt[3]{3} - \sqrt[3]{2}} \right ) \cdot \sqrt[3]{36} = \\\\\\ \frac{\sqrt[3]{3^2} - \sqrt[3]{2^2}}{\sqrt[3]{2^2} \cdot \sqrt[3]{3^2}} \cdot \frac{1}{\sqrt[3]{3} - \sqrt[3]{2}} \cdot \sqrt[3]{36} = \\\\\\ \frac{\sqrt[3]{36} \cdot \left ( \sqrt[3]{3} - \sqrt[3]{2}\right )\left ( \sqrt[3]{3} + \sqrt[3]{2} \right )}{\sqrt[3]{2^2} \cdot \sqrt[3]{3^2} \left ( \sqrt[3]{3} - \sqrt[3]{2} \right )} =

\\ \frac{\sqrt[3]{36} \cdot \left ( \cancel{\sqrt[3]{3} - \sqrt[3]{2}} \right )\left ( \sqrt[3]{3} + \sqrt[3]{2} \right )}{\sqrt[3]{2^2} \cdot \sqrt[3]{3^2} \left ( \cancel{\sqrt[3]{3} - \sqrt[3]{2}} \right )} =  \\\\\\ \frac{\sqrt[3]{36} \cdot \left ( \sqrt[3]{3} + \sqrt[3]{2} \right )}{\sqrt[3]{2^2 \cdot 3^2}} = \\\\\\ \frac{\sqrt[3]{36} \cdot \left ( \sqrt[3]{3} + \sqrt[3]{2} \right )}{\sqrt[3]{36}} = \\\\\\ \frac{\cancel{\sqrt[3]{36}} \cdot \left ( \sqrt[3]{3} + \sqrt[3]{2} \right )}{\cancel{\sqrt[3]{36}}} = \\\\\\ \boxed{\sqrt[3]{3} + \sqrt[3]{2}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?