• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício de inequação de segundo grau

Exercício de inequação de segundo grau

Mensagempor Lola » Qua Mai 08, 2013 14:40

Alguém por favor poderia resolver este exercício?

Encontre números reais b e c tais que:

X²+bx+c ? 2x+3, com 4 ? x ?7

Obrigada!
Lola
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sex Mar 18, 2011 18:31
Localização: São Paulo
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Exercício de inequação de segundo grau

Mensagempor young_jedi » Sex Mai 10, 2013 22:35

temos que

x^2+bx+c\leq2x+3

x^2+(b-2)x+c-3\leq0

temos que esta é uma parábola voltada para cima, portanto para valores de x entre as raízes da mesma ela assume valores menores que zero
portanto as raízes dela tem que ser 4 e 7
então temos que

c-3=4.7

c=24

e

b-2=-(4+7)

b=-9
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.