• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fração- Concurso Público!

Fração- Concurso Público!

Mensagempor gilson » Ter Mai 07, 2013 21:12

Olá pessoal,
Estou me preparando para concurso público de nível fundamental e médio da banca CETAP em Belém PA. Espero contar com vocês!Estou na fase de resoluções de exercícios da banca já que não tem edital aberto.

Já estudei o assunto de frações, mas ainda não compreendi como resolver essa questão:

Em um órgão público, 1/3 dos funcionários tem idade entre 20 e 30 anos, 1/4 tem idade entre 30 e 40 anos e 60 funcionários têm mais de 40 anos. Quantos funcionários têm o referido órgão?

gabarito: 144
gilson
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 07, 2013 20:31
Formação Escolar: ENSINO MÉDIO
Área/Curso: Administração
Andamento: cursando

Re: Fração- Concurso Público!

Mensagempor Luis Gustavo » Ter Mai 07, 2013 21:48

Seja x o número total de funcionários desse órgão. Temos:

\dfrac{1}{3}x+\dfrac{1}{4}x+60=x

\dfrac{x}{3}+\dfrac{x}{4}+60=x

\dfrac{4\times x+3\times x}{12}+60=x

\dfrac{7x}{12}+60=x

60=x-\dfrac{7x}{12}

60=\dfrac{12\times x-7x}{12}

60=\dfrac{5x}{12}

60\times12=5x

720=5x

x=\dfrac{720}{5}

x=144



Resposta: O referido órgão tem 144 funcionários.


Entendeu tudo?
Espero ter ajudado.
Att, Luis Gustavo.
Luis Gustavo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Mai 06, 2013 15:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Fração- Concurso Público!

Mensagempor gilson » Ter Mai 07, 2013 22:09

Luis Gustavo escreveu:
Seja x o número total de funcionários desse órgão. Temos:

\dfrac{1}{3}x+\dfrac{1}{4}x+60=x

\dfrac{x}{3}+\dfrac{x}{4}+60=x

\dfrac{4\times x+3\times x}{12}+60=x

\dfrac{7x}{12}+60=x

60=x-\dfrac{7x}{12}

60=\dfrac{12\times x-7x}{12}

60=\dfrac{5x}{12}

60\times12=5x

720=5x

x=\dfrac{720}{5}

x=144



Resposta: O referido órgão tem 144 funcionários.


Entendeu tudo?
Espero ter ajudado.
Att, Luis Gustavo.


Muito obrigado, acredito que a minha maior dificuldade estava em começar a questão.Valeu Luis!!!!!!!!!!!!
gilson
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 07, 2013 20:31
Formação Escolar: ENSINO MÉDIO
Área/Curso: Administração
Andamento: cursando

Re: Fração- Concurso Público!

Mensagempor Luis Gustavo » Ter Mai 07, 2013 22:48

gilson escreveu:Muito obrigado, acredito que a minha maior dificuldade estava em começar a questão.Valeu Luis!!!!!!!!!!!!

De nada, prazer ajudar (:
Luis Gustavo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Mai 06, 2013 15:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59