• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] Limite exponencial

[LIMITE] Limite exponencial

Mensagempor Mell » Dom Mai 05, 2013 20:14

\lim_{x\rightarrow0} \frac{2^x-3^x}{x}

Acho que eu deveria usar o Limite fundamental \lim_{x\rightarrow0} \frac{a^x-1}{x}= ln a , mas não sei como aplicá-lo... :/ Alguém pode me ajudar?
Mell
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 01, 2013 14:48
Localização: São Paulo, SP
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] Limite exponencial

Mensagempor e8group » Dom Mai 05, 2013 20:21

No meu ponto de vista ,parece ser interessante add 1 +(-1) no numerador para utilizar o limite fundamental que você citou . Já tentou ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITE] Limite exponencial

Mensagempor Mell » Dom Mai 05, 2013 21:01

Mas aí eu não vou estar alterando a função?? Desculpa, acho que não entendi o que você sugeriu :S
Mell
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 01, 2013 14:48
Localização: São Paulo, SP
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] Limite exponencial

Mensagempor e8group » Dom Mai 05, 2013 21:21

Mell escreveu:Mas aí eu não vou estar alterando a função?? Desculpa, acho que não entendi o que você sugeriu :S


Não estará alterando o resultado da função ,pois 1 + (-1)  = 0 que é o elemento neutro .Assim ,

\frac{2^x -3^x}{x} = \frac{2^x - 3^x + [1+(-1)]}{x} .Por propriedade associativa (\forall a ,b,c \in \mthbb{R} ,(a+b) + c = (a+c) +b ), podemos reescrever \frac{2^x - 3^x + [1+(-1)]}{x} como \frac{[2^x -1] +[-3^x +1]}{x} e ainda \frac{2^x -1}{x} - \frac{3^x -1}{x} .

Agora tente concluir e comente as dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITE] Limite exponencial

Mensagempor Mell » Ter Mai 07, 2013 23:37

Ah sim, não tinha entendido essa parte do elemento neutro, não tenho muita facilidade com essas estratégias matemáticas... Mas agora entendi perfeitamente sua solução. Agora fica então ln 2 - ln 3, certo?? Muito obrigada!!
Mell
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 01, 2013 14:48
Localização: São Paulo, SP
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] Limite exponencial

Mensagempor e8group » Qua Mai 08, 2013 10:15

De nada . O resultado do limite está correto .Para verificar a resposta digitamos " lim((2^x - 3^x)/x) as x to 0 " neste site e pressionamos a tecla "enter" p/ exibir o resultado conforme o link abaixo :

http://www.wolframalpha.com/input/?i=li ... +as+x+to+0
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}