• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Aritmética

Aritmética

Mensagempor matmatco » Qui Mai 02, 2013 22:43

não entendi, para achar os divisores tenho que pegar os multiplos de 2 e 5 é isso?

Sejam os numeros m, n e p com suas respectivas fatoraçoes em primos m = {2}^{6}*{3}^{3}*{5}^{2} e n={2}^{r}*{3}^{s}*{5}^{t} e p= {2}^{5}*{5}^{4} nessas condiçoes

quantos divisores de m são multiplos de 100 e quais as condiçoes que devem satisfazer r,s e t para que n seja divisor comum de m e p
Editado pela última vez por matmatco em Sáb Mai 04, 2013 15:15, em um total de 1 vez.
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Aritmética

Mensagempor chronoss » Sáb Mai 04, 2013 13:55

Quantos divisores de m são multiplos de 100 :

100\:\,=\,\:\: 4\:*\:25\,\:=\,\: {2}^{2}\:*\:{5}^{2}

m\:\,=\,\:\: {2}^{6}\:*\:{5}^{2}\:*\:{3}^{2}=\:\,100\:*\:{2}^{4}\:*\:{3}^{2}

Divisores de m que são multiplos de 100 : {2}^{2}\:*\:{5}^{2}\,\:,\:\:\:\:e\:\:\:\,(\:{2}^{2}\:*\:{5}^{2}\:)\:*\:(\:{2}^{4}\:*\:{3}^{2}\:) ; contando você vai chegar a 15 números .

Condições que r , s e t devem satisfazer para que n seja divisor comum de m e p : r\,\:\leq\,\:5\,\:\:;\:\:s\,\:=\,\:0\,\:\:;\:\:t\,\:\leq\,\:2\:.


Acho que é isso.
chronoss
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Qui Abr 18, 2013 13:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Aritmética

Mensagempor matmatco » Sáb Mai 04, 2013 14:11

obrigado, mas acabei errando na hora de digitar, o 3 é elevado a terceira vou editar
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.