• Anúncio Global
    Respostas
    Exibições
    Última mensagem

socorro :/

socorro :/

Mensagempor Amandatkm » Sex Mai 03, 2013 19:39

No meu sitio eu preservo uma área de 16.500m² com floresta nativa.Sabendo que esta área equivale a 3 campos de futebol com 50m de largura cada um,qual o comprimento desse campo?
a)110m
b)120m
c)90m
d)80m
e)100m
Amandatkm
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Ter Mar 12, 2013 12:51
Formação Escolar: ENSINO MÉDIO
Área/Curso: curso técnico em admiistração
Andamento: cursando

Re: socorro :/

Mensagempor natanaelskt » Sex Mai 03, 2013 22:22

olha pege os 16.500 metros quadrado divide por 3 campos.
dara cada campo igual a 5500 metros quadrado cada um.
a area de um campo,calcula-se assim. comprimento vezes largura = area
entao.
x vezes 50 = 5500
x= 110
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.