• Anúncio Global
    Respostas
    Exibições
    Última mensagem

UCB 2013 GEOMETRIA PLANA

UCB 2013 GEOMETRIA PLANA

Mensagempor Phaniemor » Qua Mai 01, 2013 13:27

Considere um cubo ABCDEFGH no qual ABCD é uma
face com 16 cm² de área, AE e BH são arestas e AG é uma
diagonal do cubo.


Em relação ao cubo citado, considere que, em cada
um de seus vértices, serão pintados três triângulos
retângulos de mesma cor, cada um sobre uma das faces
para as quais aquele vértice é comum, com o vértice do
ângulo reto sendo o vértice do cubo, e com 0,4 cm em cada
um de seus catetos. Cada um dos vértices será pintado em
uma única cor, distinta de todas as outras. A partir daí, serão
escolhidos três de seus vértices para que se faça uma
truncagem do cubo. Truncar um sólido significa fazer nele um
ou mais cortes planos. Neste caso, serão feitos exatamente
três cortes planos sobre arestas que convergem em um
mesmo vértice, e tais cortes serão feitos a 0,4 cm de
distância dos vértices escolhidos. Calcule o total de poliedros
distintos que se pode obter, a partir do cubo, ao fazer os
cortes citados, considerando que um poliedro difere de outro
também pelas cores nas quais alguns de seus vértices estão
pintados. Marque na folha de respostas, desprezando, se
houver, a parte decimal do resultado final.
Phaniemor
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qui Abr 18, 2013 11:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}