por lincolnluizcorrea » Qua Mai 01, 2013 13:05
Bom dia.
Sou novato no fórum, então desculpem-me algum possível erro de formatação da dúvida quanto à postagem.
Problema:
Apresenta-se um conjunto de operações de adição e multiplicação por escalar definidas. Verificar quais deles são espaços vetoriais. Para aqueles que não forem espaços vetoriais, citar os axiomas que não se verificam.
IR^2, (a,b) + (c,d) = (a,b)
alfa(a,b) = (alfa a, alfa b)
Minha tentativa:
u = (x,y)
v = (x2,y2)
w = (0,0) -> pois o espaço é bidimensional
Axiomas soma:
A1)
u + (v+w) = (u+v) + w
(x,y) + [(x2,y2) + (0,0)] = [(x,y) + (x2,y2)] + (0,0)
(x,y) + (x2+0, y2+0) = (x+x2, y+y2)
(x+x2, y+y2) = (x+x2, y+y2)
A2) u + v = v + u
(x,y) + (x2,y2) = (x2,y2) + (x,y)
(x+x2, y+y2) = (x2+x, y2+y)
Sem necessidade de explicar os demais axiomas.. gostaria de saber:
Porque a adição 1 (A1) é considerada que pertence ao espaço vetorial exposto;
Porque a adição 2 (A2) não é considerada pertencente ao espaço vetorial exposto;
Obrigado!!
-
lincolnluizcorrea
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Mai 01, 2013 12:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: eng. mecanica
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [ÁLGEBRA] ESPAÇOS VETORIAIS:
por Damile » Qui Mai 10, 2012 14:55
- 4 Respostas
- 2334 Exibições
- Última mensagem por nietzsche

Dom Mai 13, 2012 21:12
Álgebra Linear
-
- Algebra Linear: Igualdade de Subespaços vetoriais
por leandro_aur » Ter Nov 01, 2011 05:40
- 1 Respostas
- 3638 Exibições
- Última mensagem por MarceloFantini

Ter Nov 01, 2011 15:21
Álgebra
-
- algebra linear e espaços vetorial
por bebelo32 » Qui Jun 11, 2015 17:48
- 0 Respostas
- 1298 Exibições
- Última mensagem por bebelo32

Qui Jun 11, 2015 17:48
Álgebra Linear
-
- Espaços vetoriais
por alzenir agapito » Qui Jul 21, 2011 17:41
- 2 Respostas
- 2343 Exibições
- Última mensagem por alzenir agapito

Sex Jul 22, 2011 21:51
Álgebra
-
- Espaços vetoriais
por crsjcarlos » Seg Jun 10, 2013 19:14
- 0 Respostas
- 1277 Exibições
- Última mensagem por crsjcarlos

Seg Jun 10, 2013 19:14
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.