• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Oiiii pessoal peciso entender como se faz

Oiiii pessoal peciso entender como se faz

Mensagempor Justiceira » Sex Out 30, 2009 16:29

Estou com a seguinte dificuldade meu prof esta "ensinando" integrada indefinida porem ele não explicou muita coisa não.
Fui pegar um livro e vi este tipo de integrada indefinida que ate então nos exercicios dele não tinha nenhuma parecida.
Como faria pra calcular isso:

\int_\:(5x^4-3x^3+2x)\frac{1}{\sqrt[6]{x^5}}dx


Me ensinem se possivel...ou me passem o nome de um bom livro sobre o assunto!!!
:y:
Avatar do usuário
Justiceira
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Set 27, 2009 12:26
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Oiiii pessoal peciso entender como se faz

Mensagempor thadeu » Sáb Out 31, 2009 13:28

Separe as integrais:

\int \frac{5x^4\,dx}{\sqrt[6]{x^5}}-\,\int \frac{3x^3\,dx}{\sqrt[6]{x^5}}+\,\int \frac{2x\,dx}{\sqrt[6]{x^5}}\\5 \int\,x^{4-\frac{5}{6}}dx\,-3 \int x^{3-\frac{5}{6}}dx\,+2 \int\,x^{1-\frac{5}{6}}dx\\5\,\int x^{\frac{19}{6}}dx-3 \int\,x^{\frac{13}{6}}dx+2 \int\,x^{\frac{1}{6}}dx\\5 (\frac{x^{\frac{25}{6}}}{\frac{25}{6}})-3  (\frac{x^{\frac{19}{6}}}{\frac{19}{6}})+2 (\frac{x^{\frac{7}{6}}}{\frac{7}{6}})

\frac{6\,\sqrt[6]{x^{25}}}{5}\,-\,\frac{18\,\sqrt[6]{x^{19}}}{19}\,+\,\frac{12\,\sqrt[6]{x^7}}{7}\,+\,c

Simplificando:

\sqrt[6]{x}\,(\frac{6x^4}{5}\,-\,\frac{18x^3}{19}\,+\,\frac{12x}{7})

Repare que eu apenas separei as integrais e simplifiquei seus expoentes; depois apenas usei \int x^n=\frac{x^{n+1}}{n+1}.

Espero ter ajudado!!!
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Oiiii pessoal peciso entender como se faz

Mensagempor Justiceira » Sáb Out 31, 2009 19:29

Valeu ajudou sim,e muito!!!! :y:
Avatar do usuário
Justiceira
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Set 27, 2009 12:26
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.