• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral: converge

Integral: converge

Mensagempor Victor Gabriel » Seg Abr 29, 2013 14:57

Olá pessoal boa tarde!
Pessoal de uma olhada ai nesta questão e mim diga se esta correta ou esta faltando algo.

sen(x)=\sum_{n=o}^{\infty}{(-1)}^{n}\frac{{x}^{2n+1}}{(2n+1)!}=x-\frac{x³}{3!}+\frac{{x}^{5}}{5!}-\frac{{x}^{7}}{7!}...

a serie é analítica para todo x  \epsilon (-\infty,+\infty).
logo:
\frac{sen(x)}{x}=1-\frac{x²}{3!}+\frac{{x}^{4}}{5!}-\frac{{x}^{6}}{7!}+...

Agora só é intrega a série

\int_{}^{}\frac{sen(x)}{x}=\int_{}^{}1-\frac{x²}{3!}+\frac{{x}^{4}}{5!}-\frac{{x}^{6}}{7!}+...

logo a integral converge.
e ai pessoal esta certa?
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.