• Anúncio Global
    Respostas
    Exibições
    Última mensagem

série: raio

série: raio

Mensagempor Victor Gabriel » Sáb Abr 27, 2013 05:23

Dúvida: como faço para encontra uma representação em série de Potência para \frac{{x}^{3}}{x+2}.
Por favor quem puder mim ajudar ai.
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: série: raio

Mensagempor young_jedi » Dom Abr 28, 2013 11:11

tomando por base a serie geometrica nos temos que

\frac{1}{1-x}=1+x+x^2+x^3+x^4\dots

então temos que

\frac{1}{2+x}=\frac{1}{2}.\frac{1}{1-\left(-\frac{x}{2}\right)}=\frac{1}{2}\left(1+\left(-\frac{x}{2}\right)+\left(-\frac{x}{2}\right)^2+\left(-\frac{x}{2}\right)^3+\left(-\frac{x}{2}\right)^4\dots\right)

\frac{1}{2+x}=\frac{1}{2}-\frac{x}{2^2}+\frac{x^2}{2^3}-\frac{x^3}{2^4}+\frac{x^4}{2^5}\dots\right)

então

\frac{x^3}{2+x}=\frac{x^3}{2}-\frac{x^4}{2^2}+\frac{x^5}{2^3}-\frac{x^6}{2^4}+\frac{x^7}{2^5}\dots\right)

voce tambem pode determinar os termos da seria pela enesima derivada no ponto 0 mais eu acho mais trabalhoso
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)