• Anúncio Global
    Respostas
    Exibições
    Última mensagem

série: raio de connvergência

série: raio de connvergência

Mensagempor Victor Gabriel » Sáb Abr 27, 2013 05:47

Bom dia :!:
DÚVIDA sobre intervalo de convergência de série.
Questão: Encontre o raio de convergência e o intervalo de convergência da série \sum_{\n=0}^{\infty}\frac{{(-3)}^{n}{x}^{n}}{\sqrt[]{n+1}}.
Tem como mim ajudarem ai nesta questão. Até mais tarde!
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: série: raio de connvergência

Mensagempor young_jedi » Dom Abr 28, 2013 11:27

pelo teste da razão

\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|<1

portanto

\lim_{n\to\infty}\left|\frac{(-3)^{n+1}.x^{n+1}}{\sqrt{n+1+1}}.\frac{\sqrt{n+1}}{(-3)^n.x^n}\right|<1

\lim_{n\to\infty}\left|\frac{(-3)x\sqrt{n+1}}{\sqrt{n+2}}\right|<1

\lim_{n\to\infty}\left|\frac{\sqrt{n}}{\sqrt{n}}\frac{\sqrt{1+\frac{1}{n}}}{\sqrt{1+\frac{2}{n}}}.(-3)x\right|<1

\lim_{n\to\infty}\left|(-3)x\frac{\sqrt{1+\frac{1}{n}}}{\sqrt{1+\frac{2}{n}}}\right|<1

\lim_{n\to\infty}|3x|.\frac{\sqrt{1+\frac{2}{n}}}{\sqrt{1+\frac{1}{n}}}<1

aplicando o limite temos

|3x|<1

portanto

|x|<\frac{1}{3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.