• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES 2 variáveis] Provar que não existe o limite

[LIMITES 2 variáveis] Provar que não existe o limite

Mensagempor Sohrab » Qui Abr 25, 2013 00:01

Opa galera, beleza?
Sei que para provar que um certo limite de duas variáveis não existe, basta tomar o limite dessa função através de dois caminhos distintos, ou seja, de duas curvas, de forma que esses limites sejam diferentes. Prova-se assim, que não existe limite naquele ponto (xo,yo) para o qual tende o limite, isso é, xo,yo é um ponto de descontinuidade da superfície..

Eu resolvi vários exercícios sobre aqui, e todos eu conseguia resolver de forma trivial, tomando curvas como

g:(0,t)
g:(t,t)
g:(0,t²)
g:(t, at)

enfim, coisas 'fáceis' de ir testando..

Porém, como fazer para "descobrir uma curva" para usar nesse 'teste', quando ela precisa ser um pouco mais elaborada?

exemplo:
o professor resolveu este assim:

\lim_{(x,y)->(0,0)} \frac{x²y²}{x² - y²}

tome a curva c1(t) = (t,0)
\lim_{(t)->(0)} f(c1(t)) = 0(esse limite converge para zero)

tome agora a curva c2(t) = (\sqrt[2]{t²+t^4} , t)
\lim_{(t)->(0)} f(c1(t)) = +oo (esse limite diverge)

como conseguimos valores diferentes para a função quando x,y se aprovima de (0,0) por diferentes caminhos, o limite não existe.

Como ele chegou nessa curva c2? Qual motivação ele teve de testar justamente ela? Existe algum método prático para isso? Algum macete?
Valeu pessoal.
Sohrab
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Mar 18, 2010 17:42
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Téc. em Mec. Usinagem e Info Programação
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)