• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício {limite}

Exercício {limite}

Mensagempor Danilo » Qua Abr 10, 2013 23:16

Calcule o limite \lim_{x\rightarrow+-\infty}\frac{\sqrt[]{x + \sqrt[]{x+ \sqrt[]{x}}}}{\sqrt[]{x+1}}

A minha idéia inicial é multiplicar numerador e denominador por \frac{1}{x}. Mas não sei o que fazer com o fato de ter uma raiz dentro da outra...
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Exercício {limite}

Mensagempor young_jedi » Qui Abr 11, 2013 15:10

eu pensei da seguinte forma

\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x+\sqrt x}}}{\sqrt{x+1}}=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x+\frac{x}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x\left(1+\frac{1}{\sqrt x}\right)}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt x\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\frac{x}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x\left(1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}\right)}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+\frac{x}{x}}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x\left(1+\frac{1}{x}\right)}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt x\sqrt{1+\frac{1}{x}}}

=\lim_{x\to\infty}\frac{\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{1+\frac{1}{x}}}=1

no entanto isto so vale para x tendento para + infinito porque para - infinito não existe raiz de numeros negativos
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Exercício {limite}

Mensagempor Danilo » Ter Abr 23, 2013 11:44

young_jedi escreveu:eu pensei da seguinte forma

\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x+\sqrt x}}}{\sqrt{x+1}}=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x+\frac{x}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt{x\left(1+\frac{1}{\sqrt x}\right)}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\sqrt x\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x+\frac{x}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt{x\left(1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}\right)}}{\sqrt{x+1}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x+\frac{x}{x}}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{x\left(1+\frac{1}{x}\right)}}

=\lim_{x\to\infty}\frac{\sqrt x\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt x\sqrt{1+\frac{1}{x}}}

=\lim_{x\to\infty}\frac{\sqrt{1+\frac{1}{\sqrt x}\sqrt{1+\frac{1}{\sqrt x}}}}{\sqrt{1+\frac{1}{x}}}=1

no entanto isto so vale para x tendento para + infinito porque para - infinito não existe raiz de numeros negativos




Valeu!!!! Entendi!!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59