• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida Uesb

Dúvida Uesb

Mensagempor jordyson rocha » Seg Abr 22, 2013 19:08

Considerando-se o quadrado ABCD inscrito na circunferência de equação {(x-1)}^{2} + {(y+2)}^{2} = 5 e A(3,-1),pode-se afirmar que uma equação da reta que contém a diagonal BD é:

01) 3x - 2y - 7
02) 2y + x + 3
03) 2y - x + 5
04) 2x - y = 4
05) 2x + y = 0


Tentei de todos os jeitos mas acabo sempre na resposta errada a 03 . dá uma forcinha ai. muito obrigado.
jordyson rocha
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Jan 30, 2013 11:44
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.